IN Volvement of cannabinoid receptors in peripheral and spinal morphine analgesia

J. DESROCHES, a J.-F. BOUCHARD, b L. GENDRON c,d,e AND P. BEAULIEU a,f

a Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
b Faculty of Medicine and School of Optometry, Université de Montréal, Montréal, Québec, Canada
c Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
d Centre de recherche clinique Étienne-Le bel, Université de Sherbrooke, Sherbrooke, Québec, Canada
e Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
f Department of Anesthesiology, Université de Montréal, Montréal, Québec, Canada

Abstract—The interactions between the cannabinoid and opioid systems for pain modulation are reciprocal. However, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. We studied these interactions with the goal of highlighting the involvement of the cannabinoid system in morphine-induced analgesia. In both phases of the formalin test, intra paw and intrathecal morphine produced similar antinociceptive effects in C57BL/6, cannabinoid type 1 and type 2 receptor wild-type (respectively cnr1WT and cnr2WT) mice. In cnr1 and cnr2 knockout (KO) mice, at the dose used the antinociceptive effect of intra paw morphine in the inflammatory phase of the formalin test was decreased by 87% and 76%, respectively. Similarly, the antinociceptive effect of 0.1 μg spinal morphine in the inflammatory phase was abolished in cnr1KO mice and decreased by 90% in cnr2KO mice. Interestingly, the antinociceptive effect of morphine in the acute phase of the formalin test was only reduced in cnr1KO mice. Notably, systemic morphine administration produced similar analgesia in all genotypes, in both the formalin and the hot water immersion tail-flick tests. Because the pattern of expression of the mu opioid receptor (MOP), its binding properties and its G protein coupling remained unchanged across genotypes, it is unlikely that the loss of morphine analgesia in the cnr1KO and cnr2KO mice is the consequence of MOP malfunction or downregulation due to the absence of its heterodimerization with either the CB1 or the CB2 receptors, at least at the level of the spinal cord. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Key words: cannabinoid receptors, mu opioid receptors (MOP), morphine, pain, tail-flick test, formalin test.

INTRODUCTION

Among several pharmacological properties, analgesia is the most common feature shared by the cannabinoid and opioid systems (Manzanares et al., 1999; Massi et al., 2001). The cannabinoid and opioid receptors display similar properties. They both belong to the G-protein-coupled receptor family and are coupled to similar intracellular signaling mechanisms (Bidaut-Russell et al., 1990; Childers et al., 1992; Howlett, 1995). Indeed, the cannabinoids mediate their pharmacological effects through at least two types of receptors, namely CB1 (Matsuda et al., 1990) and CB2 (Munro et al., 1993). The anatomical distribution of the CB1 receptor is consequent with its functions, including the modulation of pain perception at the central, spinal and peripheral levels (Hohmann, 2002; Walczak et al., 2005, 2006; Agarwal et al., 2007; Lever and Rice, 2007). By contrast, CB2 receptor expression seems to be found predominantly in the peripheral tissues (Munro et al., 1993; Gallegue et al., 1995; Schatz et al., 1997; Jnavee and l., 2007). However, the expression of this receptor has also been described in brainstem neurons (Van Sickle et al., 2005) and in microglial cell cultures (Beltramo et al., 2006). Opioids mediate their pharmacological effects mainly through three types of receptors: mu (MOP) (Yasuda et al., 1993), delta (DOP) (Evans et al., 1992; Kieffer et al., 1992) and kappa (KOP) (Chen et al., 1993). Although they are found throughout the central nervous system (CNS) and in the peripheral tissues, opioid receptors are primarily expressed at high levels in several brain areas involved in pain perception (Pol and Puig, 2004; Bodnar, 2012).

0306-4522/13 $36.00 © 2013 The Authors. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.neuroscience.2013.12.030
Interactions between the two systems for pain modulation are reciprocal. Although the role of opioids in cannabinoid antinociceptive effects has been documented (Maldonado and Valverde, 2003; Chichewicz, 2004), there is little information regarding the involvement of the cannabinoid system in the antinociceptive mechanisms of opioids. Indeed, it was recently demonstrated that the CB$_1$ antagonist AM251 counteracts morphine-induced antinociception in an inflammatory pain model (da Fonseca Pacheco et al., 2008; Pacheco Dda et al., 2009) and in the tail-flick test in mice (Pacheco Dda et al., 2009). These observations led to the hypothesis that MOP activation could induce local release of endocannabinoids and that the subsequent peripheral (da Fonseca Pacheco et al., 2008) or central (Pacheco Dda et al., 2009) activation of the cannabinoid receptors CB$_1$ and/or CB$_2$ could contribute to the antinociceptive effects of morphine. A role for the endocannabinoid system in the inhibition of MOP mRNA expression and signaling was also recently described (Paldyova et al., 2008), demonstrating that intraperitoneal administration of the CB$_2$ antagonist SR144528 attenuates MOP activity through CB$_2$ cannabinoid receptors (Paldy et al., 2008; Paldyova et al., 2008).

While experiments using pharmacological tools to modify cannabinoid signaling suggested that endocannabinoids are clearly involved in the antinociceptive effects of opioids, studies using transgenic mice are not conclusive. Thus, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. The aim of this study was therefore to investigate whether opioid and cannabinoid systems can interact at various levels of the neuraxis. We evaluated the role of the cannabinoid system in peripheral (i.e. local injection), spinal and systemic antinociception induced by the activation of MOP following morphine administration in C57BL/6, cnr1WT, cnr1KO, cnr2WT and cnr2KO mice.

EXPERIMENTAL PROCEDURES

Animals

Male C57BL/6, cnr1WT, cnr1KO, cnr2WT and cnr2KO mice (25–30 g at the time of testing) were used in the current study. They were housed in groups of two to four in standard plastic cages with sawdust bedding in a climate-controlled room. The mice were maintained under a 14-h light/dark cycle (light period 06:00–20:00 h). All experiments were conducted between 07:00 and 12:00 h. The mice were allowed free access to food pellets and water. The C57BL/6 mice were purchased from Charles River, St-Constant, Quebec, Canada, whereas the cnr1 and cnr2 transgenic mice were obtained from Pr. Beat Lutz (Institute of Physiological Chemistry and Pathobiology, University of Mainz, Germany) and Jackson Laboratory (Bar Harbor, ME, USA), respectively. These colonies were maintained in-house. This research protocol was approved by the Local Animal Care Committees at the Université de Montréal and Université de Sherbrooke and all procedures conformed to the directives of the Canadian Council on Animal Care and guidelines of the International Association for the Study of Pain. All animal experiments were designed to minimize the number of animals used and their suffering.

Drugs

Morphine sulfate (Morphine HP® 50, lot #151034; Sandoz, Boucherville, QC, Canada) was diluted in a sterile saline solution (0.9% NaCl). Drugs were administered into the dorsal surface of the left hind paw (i.paw), intrathecally (i.t.) or subcutaneously (s.c.) before intradermal (i.d.) formalin injection into the plantar surface of the left hind paw. Morphine was administered i.paw (1 µg/10 µL), i.t. (0.1 µg/5 µL), and s.c. (3 mg/kg for the formalin test or 1, 3 and 10 mg/kg for the tail-flick test). Intrathecal injections were performed in non-anesthetized mice as described previously (Fairbanks, 2003; Gendron et al., 2007). Briefly, a 30-G ½ needle mounted on a 10-µL Luer-tip Hamilton syringe (VWR) was inserted into the L5–L6 intervertebral space, and 5 µL of morphine was injected. Saline was used as vehicle control. The appropriate placement of the needle was confirmed by the observation of a light flick of the tail.

Behavioral studies

Formalin test. The formalin test is a well-established model of tonic pain that is characterized by a transient, biphasic nociceptive response (Tjolsen et al., 1992). The first phase is characterized by the acute activation of sensory receptors. The second phase involves an inflammatory reaction in the peripheral tissue and the development of CNS sensitization. The mice were acclimatized to the testing environment (a clear Plexiglas box 30 × 30 × 30 cm) for 15–20 min or until the cessation of explorative behavior. Thereafter, drugs were injected i.paw, i.t., or s.c. with saline or morphine 5 or 10 min before a 10-µL i.d. injection of a 2% formaldehyde solution (i.e., 5.4% formalin, Fisher Scientific, Montreal, QC, Canada) into the plantar surface of the left hind paw. The experimenter was blind to the drug treatments during testing. Following each injection, the mice were immediately placed in the observation chamber. Nociceptive behaviors were observed for 60 min with the help of a mirror angled at 45° below the observation chamber to allow for an unobstructed view of the hind paws.

The nociceptive behaviors were assessed using a weighted score, as described previously (Dubuisson and Dennis, 1977; Codere et al., 1993). Following an injection of formalin into the left hind paw, the nociceptive mean score was determined for each 3-min block during the 60-min recording period. In each 3-min bin, the total time the animal spent in four different behavioral categories was recorded: (0), the injected paw is comparable to the contralateral paw and is used normally by the animal; (1), the injected paw has little or no weight placed on it; (2), the injected paw is elevated and is not in contact with any surface; and (3), the
injected paw is licked, bitten or shaken. The weighted noceptive score ranged from 0 to 3 and was calculated by multiplying the time (in seconds) spent in each category by its assigned category weight, summing these products and dividing by the total time for each 3-min block of time. Noceptive behavior was thus rated using the following formula: Pain score = (1T1 + 2T2 + 3T3)/180.

The area under the curve (A.U.C.) of "pain score-time" above the weighted pain score of 1 was calculated for the acute phase (0–9 min; Phase I) and the inflammatory phase (21–60 min; Phase II) by the trapezoidal rule using Prism 5.01.

Hot-water immersion tail-flick test. To test the antinociceptive effects of s.c. morphine, tail-flick latencies were measured in C57Bl/6, *cnr1*WT, *cnr1*KO, *cnr2*WT and *cnr2*KO mice. The experimenter was blind to the genotype during all testing. Briefly, two centimeters of the tail was immersed in a water bath apparatus (IITC Life Science Inc., Woodland Hills, CA, USA) maintained at 52 ± 0.5 °C. Latency to response was determined by a vigorous tail flick. Baseline measurements were obtained for each mouse before s.c. morphine injection (zero time) and determined from the average of three consecutive trials on the day of the experiment. Subsequently, s.c. injection of morphine (1, 3 and 10 mg/kg) was carried out, and latencies to tail withdrawal were measured every 10 min for a 60-min period. A cut-off time of 10 s was imposed to minimize tissue damage. If an animal reached the cut-off, the tail was removed from the water, and the animal was assigned the maximum score. The percentage of the Maximal Possible Effect (MPE) of s.c. morphine was calculated according to the formula: %MPE = 100 × [(test latency) – (baseline latency)]/ [(cut-off time) – (baseline latency)].

Peripheral hind paw edema

At the end of the formalin test, maximal paw thickness was measured at the base of the ipsilateral hind paw (i.e., formalin-injected hind paw) using a digital micrometer (Mitutoyo Corporation, Aurora, IL, USA) with a resolution of 1 μm (Peeticevic et al., 1978; Guindon et al., 2007). The level of inflammation induced by formalin injection in all genotypes was also evaluated by measuring the volume of the hind paw with a plethysmometer (IITC Life Science Inc., Woodland Hills, CA, USA). The hind paw was placed in a small water bath and the volume displacement was measured. Two measurements were carried out for both the ipsi- and the contralateral hind paw, 60 min after formalin injection. Data are expressed as the percentage (%) of paw volume relative to the total body weight of the animal.

Saturation binding assays

Saturation binding assays using mouse spinal cord were performed to determine the affinity (*Kd*) and the number (*B*max) of spinal MOP binding sites for each genotype (*n* = 3 independent experiments per genotype). First, naïve mice were briefly anesthetized with isoflurane 5% and euthanized. The spinal cord was then rapidly dissected by laminectomy and pooled (*n* = 5 spinal cords per assay) in tubes containing 15 mL of ice-cold 50 mM Tris buffer at pH 7.4 with protease inhibitors (buffer A) until homogenization. Afterward, freshly isolated mouse spinal cords were homogenized using a Polytron PT-10-35 (Kinematica, Inc., Boemia, NY, USA) at 20,000 rpm on ice for 40 s. The homogenates were centrifuged at 15,000 rpm (JA 25.50 rotor; Beckman Coulter) for 15 min, the supernatant was discarded, and the pellets were then stored at −80 °C until they were used. On the day of the experiment, the pellets were thawed on ice, re-suspended in 15 mL of Tris buffer and centrifuged at 15,000 rpm for 15 min. The supernatant was discarded, and the pellets obtained were re-suspended in 35 mL of Tris buffer. A last centrifugation was performed at 15,000 rpm for 15 min; the supernatant was discarded, and the pellets obtained were finally suspended in 10 mL of ice-cold 50 mM potassium phosphate buffer at pH 7.2.

Saturation binding assays using [3H] DAMGO (range: 0.02–16 nM) (MOP ligand; PerkinElmer, Woodbridge, ON, Canada) were performed in duplicate on aliquots of membrane homogenate using a membrane concentration of 2 mg protein/mL. Protein concentrations were determined by the Lowry method (Lowry et al., 1951) using reagents from Bio-Rad (Bio-Rad Laboratories, Mississauga, ON, Canada). The saturation binding experiments were performed in potassium phosphate buffer, in 5-mL polypropylene tubes (final volume of 500 μL). Non-specific binding was determined in the presence of 1 μM DAMGO. The tubes were incubated for 90 min at 25 °C. The incubation was terminated by filtration using ice-cold potassium phosphate buffer (3 × 2 mL) on a Whatman GF/C filter (GE Healthcare Life Sciences, Piscataway, NJ, USA). The filters were then placed in vials containing scintillation cocktail. The radioactivity present on the disks was determined by liquid scintillation counting using a Beckman Coulter LS-6500 scintillation counter (Beckman Coulter Canada Inc., Mississauga, ON, Canada). The counts per minute (cpm) were converted into disintegrations per minute (dpm) using the external standard method, and finally, the *B*max was converted into fmol/mg, whereas the *Kd* was expressed in nM.

Immunofluorescence

Immunofluorescence was performed to visualize the expression of MOP in spinal cord of *cnr1*WT, *cnr1*KO, *cnr2*WT and *cnr2*KO mice. First, naïve mice were briefly anesthetized with 5% isoflurane and perfusion-fixed with ice-cold 4% paraformaldehyde (PFA; Polysciences, Inc., Warrington, PA, USA) in 0.2 M phosphate buffer (PB, pH 7.4) at 4 °C (500 mL). The spinal cord was then isolated by laminectomy, post-fixed in ice-cold 4% PFA for 2 h and cryoprotected in 30% sucrose in 0.2 M PB for 48 h. The lumbar segment L4–L6 was then snap-frozen in −50 °C isopentane and stored at −80 °C until sectioning. Afterward, transverse sections were cut on a microtome (Leica SM2000R; Toronto, Ontario, Canada)
at a thickness of 30 μm and placed in phosphate-buffered saline (PBS). The floating sections were then incubated in 1% sodium borohydride in PBS for 30 min, rinsed twice with PBS, and incubated for 30 min at room temperature in a blocking solution containing 3% normal goat serum (NGS) and 0.3% Triton X-100 in PBS. The sections were then incubated overnight at 4 °C with the guinea pig anti-MOP primary antibody (cat#: GP10106; Neuronics, Minneapolis, MN, USA) diluted 1:1000 in the blocking solution. The floating sections were then washed in PBS and incubated with a goat anti-guinea pig secondary antibody conjugated with Alexa Fluor 488 (Molecular Probes, Invitrogen, Carlsbad, CA, USA) at a concentration of 1:1000 in PBS for 2 h at room temperature.

Images were collected using an epifluorescence microscope (Leica DM4000B; Leica Microsystems, Toronto, Ontario, Canada) to visualize MOP expression in laminae I–II of the dorsal horn of the mouse spinal cord (n = 3 animals per genotype). The pictures were taken with a 5× objective.

[^35]S GTPγS binding assay
[^35]S GTPγS binding assays using mouse spinal cords were performed to determine the potency (EC50) and the efficacy (Emax) of spinal MOP binding sites for each of the genotypes. First, naive mice were briefly anesthetized with isoflurane 5% and euthanized. The spinal cords were then rapidly collected and pooled (n = 4–6 spinal cords per assay) in tubes containing 3 mL of ice-cold buffer (50 mM HEPES, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA and protease inhibitors, pH 7.4) until homogenization. The freshly isolated mouse spinal cords were then homogenized using a Wheaton Potter–Elvehjem tissue grinder combined with a Teflon pestle inserted in a Wheaton electric overhead stirrer (Fischer Scientific) at approximately 600 rpm on ice, 3 times 5–6 passages. The homogenates were centrifuged at 13,000 rpm (JA 25.15 rotor; Beckman Coulter) for 20 min, the supernatant was discarded, and the pellets were then stored at −80 °C until use. On the day of the experiment, the pellets were thawed on ice, re-suspended in 3 mL of HEPES buffer and centrifuged at 13,000 rpm for 20 min; subsequently, the supernatant was discarded, and the pellets obtained were suspended in 4 mL of ice-cold Tris–HCl buffer. Protein concentrations were determined by a one-way ANOVA or the inflam-matory phase of the formalin test (Fig. 1 C; A.U.C., Fmax) was obtained from a nonlinear regression analysis (Prism 5.01). Comparisons of means were performed using either a two-tailed unpaired t-test, a one-way analysis of variance (ANOVA) or a two-way ANOVA followed by Bonferroni’s multiple-comparison test. The binding data from saturation studies were analyzed using nonlinear regression to determine Emax and Kd (Prism 5.01). All binding data were best fit by a one-site model. The morphine-stimulated[^35]S GTPγS binding data were fit with a sigmoidal 3-parameter function (Prism 5.01) to determine the EC50. The comparison of differences between basal vs. stimulated[^35]S GTPγS binding, as well as differences between EC50 within the different genotypes was determined by a one-way ANOVA followed by Bonferroni’s multiple-comparison test. The critical level of significance was set at 5% (P < 0.05).

RESULTS
Intradermal formalin injection induces a similar biphasic nociceptive profile within all genotypes

In the present study, we observed that for all genotypes, formalin injection produced a similar biphasic nociceptive response (acute and inflammatory phases) that is typical of this tonic pain model (Fig. 1). Indeed, nociceptive responses following i.d. formalin injection were not different within genotypes for both phases of the formalin test (Fig. 1A; P = 0.8949, Fgenotypes = 0.2738, two-way ANOVA). These nociceptive effects were also compared by separate analyses of the acute and inflammatory phases. There were no differences in the nociceptive effects of i.d. formalin in the acute phase (Fig. 1B; A.U.C., F = 2.013, one-way ANOVA) or the inflammatory phase of the formalin test (Fig. 1C; A.U.C., F = 0.1949, one-way ANOVA). These results demonstrate that all genotypes present a similar nociceptive profile following i.d. formalin injection into the hind paw in both phases of the formalin test.
Involvement of CB₁ cannabinoid receptors in the antinociceptive effects of i.paw morphine in the formalin test

As expected, local (i.paw) morphine (1 μg) induced an inhibition of pain behaviors in the C57BL/6 mice (Fig. 2 vs. Fig. 1). Similarly, i.paw morphine reduced formalin-induced nocifensive behaviors in the cnr1WT mice. However, at the same dose, i.paw morphine had no analgesic effects in the cnr1KO mice. Thus, compared to the C57BL/6 and the cnr1WT mice, the pain scores measured for the cnr1KO mice following i.paw morphine injection were significantly higher in both the acute and inflammatory phases of the formalin test (Fig. 2A; \(P < 0.0001 \), \(F_{\text{genotypes}} = 81.37 \), two-way ANOVA).
These differences observed in the antinociceptive effects were also confirmed by separate analyses of the acute and inflammatory phases. We observed a significant increase in the A.U.C. for the acute phase (Fig. 2B; A.U.C., 7.2 ± 0.9 for cnr1KO vs. 3.1 ± 0.3 for C57BL/6 and 4.5 ± 0.6 for cnr1WT; $F = 11.02$, one-way ANOVA) and for the inflammatory phase (Fig. 2C; A.U.C., 27.5 ± 3.8 for cnr1KO vs. 7.1 ± 0.8 for C57BL/6 and 9.2 ± 1.6 for cnr1WT; $F = 21.54$, one-way ANOVA). These results demonstrate that the i.paw morphine effectiveness is impeded in the cnr1KO vs. the cnr1WT mice in both phases of the formalin test.
More precisely, under these conditions the analgesic effects of morphine were completely abolished in the acute phase and reduced by 87% in the inflammatory phase (Fig. 2B, C). Such a decrease suggests that CB₁ receptors are important for the complete expression of the analgesic effects of i.paw morphine in both phases of the formalin test.

Involvement of CB₂ cannabinoid receptors in the antinociceptive effects of i.paw morphine in the formalin test

The administration of i.paw morphine (1 μg) induced a decrease in pain behaviors in C57BL/6 mice (Fig. 3 vs. Fig. 1) (for comparative purposes, the results presented for C57BL/6 mice are the same as in Fig. 2). Similarly, i.paw morphine reduced the formalin-induced pain behaviors in the cnr2WT mice. However, at the same dose, i.paw morphine lost its antinociceptive properties in the cnr2KO mice in the late phase. Indeed, compared to the C57BL/6 and the cnr2WT mice, the pain score measured for the cnr2KO mice following i.paw morphine injection was significantly higher only in the inflammatory phase of the formalin test (Fig. 3A; \(F = 1.29 \), one-way ANOVA). Under these conditions, our results demonstrated a loss of i.paw morphine effectiveness of 76% in the cnr2KO mice vs. the cnr2WT mice, but only in the inflammatory phase of the formalin test (Fig. 3B, C). Such a decrease suggests that CB₂ receptors are involved in the analgesic effects of i.paw morphine in the inflammatory phase of the formalin test.

Locally mediated antinociceptive effects of i.paw morphine in the formalin test

To confirm that the previously observed antinociceptive effects of i.paw morphine were induced by a local effect of morphine, rather than by a systemic effect, we further injected morphine contralaterally to the formalin injection. In the C57BL/6 mice, i.paw morphine (1 μg) had no analgesic effect when injected in the contralateral hind paw. Thus, pain scores for contralateral i.paw morphine were not different from pain scores measured for animals injected with i.paw saline, but they did differ from the pain scores obtained with ipsilateral i.paw morphine injection in both the acute and the inflammatory phases of the formalin test (Fig. 4A; \(F = 26.74 \), one-way ANOVA). These differences were also observed when the acute and the inflammatory phases were analyzed separately, as confirmed by the analysis of the acute phase A.U.C. (Fig. 4A, upper inset; A.U.C., 6.7 ± 0.5 for contralateral i.paw morphine vs. 6.3 ± 0.4 for i.paw saline and 3.1 ± 0.3 for i.paw morphine; \(F = 25.68 \), one-way ANOVA) and the inflammatory phase A.U.C. (Fig. 4A, lower inset; A.U.C., 30.6 ± 1.5 for contralateral i.paw morphine vs. 28.2 ± 2.0 for i.paw saline and 7.1 ± 0.8 for i.paw morphine; \(F = 72.09 \), one-way ANOVA).

In the cnr1WT mice, i.paw morphine (1 μg) had no analgesic effect when injected into the contralateral hind paw. Hence, the pain scores for contralateral i.paw morphine were not different from the pain scores measured for animals injected with i.paw saline, but they did differ from the pain scores obtained with ipsilateral i.paw morphine injection in both the acute and the inflammatory phases of the formalin test (Fig. 4B; \(P < 0.0001 \), \(F_{\text{treatments}} = 83.51 \), two-way ANOVA). These differences were also observed when the acute and the inflammatory phases were analyzed separately, as confirmed by the analysis of the acute phase A.U.C. (Fig. 4B, upper inset; A.U.C., 6.7 ± 0.3 for contralateral i.paw morphine vs. 7.1 ± 0.5 for i.paw saline and 4.5 ± 0.6 for i.paw morphine; \(F = 8.60 \), one-way ANOVA) and the inflammatory phase A.U.C. (Fig. 4B, lower inset; A.U.C., 31.4 ± 2.6 for contralateral i.paw morphine vs. 30.2 ± 2.8 for i.paw saline and 9.2 ± 1.6 for i.paw morphine; \(F = 26.74 \), one-way ANOVA).

In the cnr2WT mice, i.paw morphine (1 μg) had no analgesic effect when injected into the contralateral hind paw. Actually, the pain scores for contralateral i.paw morphine were not different from the pain scores measured for animals injected with i.paw saline, but they did differ from the pain scores obtained with ipsilateral i.paw morphine injection in both the acute and the inflammatory phases of the formalin test (Fig. 4C; \(P < 0.0001 \), \(F_{\text{treatments}} = 48.85 \), two-way ANOVA). These differences were also observed when the acute and the inflammatory phases were analyzed, as confirmed by the analysis of the acute phase A.U.C. (Fig. 4C, upper inset; A.U.C., 6.3 ± 0.4 for contralateral i.paw morphine vs. 6.7 ± 0.3 for i.paw saline and 4.3 ± 0.7 for i.paw morphine; \(F = 7.18 \), one-way ANOVA) and the inflammatory phase A.U.C. (Fig. 4C, lower inset; A.U.C., 29.5 ± 1.3 for contralateral i.paw morphine vs. 31.1 ± 3.6 for i.paw saline and 11.1 ± 2.8 for i.paw morphine; \(F = 16.50 \), one-way ANOVA). These observations reveal that the effects of i.paw morphine described in Figs. 2 and 3 are due to its local as opposed to systemic action in the formalin test.

Involvement of CB₁ cannabinoid receptors in the antinociceptive effects of i.t. morphine in the formalin test

Because the analgesic effects of morphine are also mediated by receptors located in the spinal cord, we also studied whether cannabinoid receptors are involved in the effects of i.t. morphine. We observed that i.t. morphine (0.1 μg) induced an inhibition of the nocifensive behaviors in C57BL/6 mice (Fig. 5). Similarly, i.t. morphine reduced the formalin-induced behaviors in the cnr1WT mice. However, at the same dose, i.t. morphine had no analgesic effects in the
cnr1KO mice. In fact, compared to the C57BL/6 and the cnr1WT mice, the pain score measured for the cnr1KO mice following i.t. morphine injection was significantly higher both in the acute and the inflammatory phases of the formalin test (Fig. 5A; $P < 0.0001$, $F_{\text{genotypes}} = 186.90$, two-way ANOVA). These differences observed in the antinociceptive effects were also confirmed by separate analyses of the acute and the inflammatory phases. We observed a significant increase in the acute phase A.U.C. (Fig. 5B; A.U.C., 7.5 ± 0.5 for cnr1KO vs. 4.7 ± 0.5 for C57BL/6 and 5.1 ± 0.6 for cnr1WT; $F = 8.07$, one-way ANOVA) and
Fig. 4. Contralateral i.paw morphine injection did not inhibit formalin-induced pain behavior. (A) In the early and the late phases of the formalin test in C57BL/6 mice, ipsilateral i.paw morphine (1 µg/10 µL, 5 min prior to formalin injection) produced a decrease in formalin-induced pain behaviors compared to contralateral i.paw morphine ($^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$) (two-way ANOVA with Bonferroni’s post hoc test) (for analysis purpose, the results presented for i.paw saline and ipsilateral i.paw morphine were taken from Figs. 1–3). These data show that the antinociceptive effects of i.paw morphine were local rather than systemic. The A.U.C. analyses of the early and late phases of the formalin test validate the absence of antinociceptive effects for contralateral i.paw morphine (Phase I; $^*P < 0.05$ vs. ipsilateral i.paw morphine; Phase II; $^{**}P < 0.001$ vs. ipsilateral i.paw morphine) (one-way ANOVA with Bonferroni’s post hoc test). (B) In the early and late phases of the formalin test in the $cnr1$ WT mice, ipsilateral i.paw morphine (1 µg/10 µL, 5 min prior to formalin injection) produced a decrease in the formalin-induced pain behaviors compared to contralateral i.paw morphine ($^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$) (two-way ANOVA with Bonferroni’s post hoc test). The A.U.C. analyses of the early and late phases of the formalin test validate the absence of antinociceptive effects for contralateral i.paw morphine (Phase I; $^{**}P < 0.001$ vs. ipsilateral i.paw morphine; Phase II; $^{*}P < 0.001$ vs. ipsilateral i.paw morphine) (one-way ANOVA with Bonferroni’s post hoc test). (C) In the early and the late phases of the formalin test in the $cnr2$ WT mice, i.paw morphine (1 µg/10 µL, 5 min prior to formalin injection) produced a decrease in formalin-induced pain behaviors compared to contralateral i.paw morphine ($^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$) (two-way ANOVA with Bonferroni’s post hoc test). The A.U.C. analyses of the early and late phases of the formalin test validate the absence of antinociceptive effects for contralateral i.paw morphine (Phase I; $^*P < 0.05$ vs. ipsilateral i.paw morphine; Phase II; $^{**}P < 0.001$ vs. ipsilateral i.paw morphine) (one-way ANOVA with Bonferroni’s post hoc test). The numbers in parentheses represent the number of animals per group. Data are expressed as means ± SEM.
the inflammatory phase (Fig. 5C; A.U.C., 35.5 ± 2.5 for cnr1KO vs. 7.5 ± 0.9 for C57BL/6 and 9.5 ± 1.6 for cnr1WT; $F = 78.42$, one-way ANOVA). These results demonstrate that i.t. morphine analgesia was greatly impaired in the cnr1KO mice for both phases of the formalin test. Indeed, at this dose of i.t. morphine, its analgesic effect was almost completely abolished in both phases of the formalin test, thus supporting a major role for CB1 receptors in the analgesic effects of morphine in this tonic pain context.
Involvement of CB$_2$ cannabinoid receptors in the antinociceptive effects of i.t. morphine in the formalin test

The injection of i.t. morphine (0.1 l.g) induced a robust inhibition of pain behaviors in C57BL/6 mice (Fig. 6) (for comparative purposes, the results presented for C57BL/6 mice are the same as in Fig. 5). Similarly, i.t. morphine reduced the formalin-induced pain behaviors in the cnr2WT mice. However, at the same dose, i.t. morphine had no analgesic effects in the cnr2KO mice in the late phase. Thus, compared to the C57BL/6 and the cnr2WT mice, the pain score measured for the cnr2KO mice following i.t. morphine injection was significantly different only in the inflammatory phase of the formalin test (Fig. 6A; $P < 0.0001$).

![Graph showing pain scores over time](image)

Fig. 6. Loss of antinociceptive effects of i.t. morphine in cnr2KO mice. (A) In the late phase of the formalin test, the analgesic effects of i.t. morphine (0.1 l.g/5 l.L, 5 min prior to formalin injection) are decreased in cnr2KO mice compared to cnr2WT mice (*$P < 0.05$, **$P < 0.01$, ***$P < 0.001*) (two-way ANOVA with Bonferroni’s post hoc test). (B) The A.U.C. analysis indicates that i.t. morphine preserves its analgesic effectiveness in the early phase of the formalin test. (C) The A.U.C. analysis of the late phase reveals a loss of analgesic effectiveness for i.t. morphine in the late phase (*$P < 0.001$ for cnr2KO vs. C57BL/6 mice (for reference purposes, the results presented for C57BL/6 mice are the same as in Fig. 5); $\triangle P < 0.001$ for cnr2KO vs. cnr2WT mice) (one-way ANOVA with Bonferroni’s post hoc test). The numbers in parentheses represent the number of animals per group. Data are expressed as means ± SEM.
Indeed, the loss of the antinociceptive effects of i.t. morphine in the cnr2KO mice over the entire inflammatory phase was confirmed by a significant increase in the A.U.C. compared to C57BL/6 and cnr2WT mice (Fig. 6C; A.U.C., 30.8 ± 2.7 for cnr2KO vs. 7.5 ± 0.9 for C57BL/6 and 11.8 ± 0.9 for cnr2WT; *F* = 50.72, one-way ANOVA). The effect of morphine in the acute phase of the formalin test was similar for all genotypes (Fig. 6B; A.U.C., *F* = 0.37, one-way ANOVA). These results therefore revealed a 90% loss of i.t. morphine effectiveness in the cnr2KO vs. the cnr2WT mice specifically in the inflammatory phase of the formalin test. Such a decrease suggests that CB2 receptors have an important role in the analgesic effects of i.t. morphine in the inflammatory phase of the formalin test.

Effect of formalin on thickness and edema of the hind paw

To verify whether the absence of CB1 or CB2 receptors impacts the development of formalin-induced inflammation, which in turn might affect the analgesic properties of morphine, we measured the maximal paw thickness and edema following the injection of formalin for various treatments and genotypes.

Both the thickness and the edema (volume) significantly increased in the formalin-injected hind paw vs. the contralateral side 60 min after formalin injection (data not shown). As shown in Table 1, the maximal thickness of the formalin-injected hind paw for each genotype did not differ between treatments (Table 1; *P* = 0.9036, *F*$_{\text{treatments}}$ = 0.1875 for C57BL/6; *P* = 0.7126, *F*$_{\text{treatments}}$ = 0.4611 for cnr1WT; *P* = 0.1249, *F*$_{\text{treatments}}$ = 2.157 for cnr1KO; *P* = 0.3699, *F*$_{\text{treatments}}$ = 1.106 for cnr2WT; *P* = 0.1217, *F*$_{\text{treatments}}$ = 2.183 for cnr2KO, one-way ANOVA). Similarly, the edema induced by formalin did not differ across treatments within each genotype (Table 1; *P* = 0.3631, *F*$_{\text{treatments}}$ = 1.124 for C57BL/6; *P* = 0.2454, *F*$_{\text{treatments}}$ = 1.498 for cnr1WT; *P* = 0.1312, *F*$_{\text{treatments}}$ = 2.108 for cnr1KO; *P* = 0.1443, *F*$_{\text{treatments}}$ = 2.015 for cnr2WT; *P* = 0.0821, *F*$_{\text{treatments}}$ = 2.581 for cnr2KO, one-way ANOVA).

Cannabinoid receptors are not involved in the antinociceptive effects of s.c. morphine in the formalin test

Because a significant contribution of the analgesic effects of morphine is mediated by receptors located in the brain (periaqueductal gray, rostroventral medulla), we also evaluated the contribution of CB1 and CB2 receptors following systemic morphine administration. As anticipated, s.c. morphine (3 mg/kg) induced an inhibition of pain behaviors in the C57BL/6 mice, but only in the late phase of the formalin test (Fig. 7). Surprisingly, in contrast to what we observed following

<table>
<thead>
<tr>
<th>Maximal thickness (mm)</th>
<th>Saline i.paw</th>
<th>Morphine i.paw</th>
<th>Saline i.t.</th>
<th>Morphine i.t.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>1.96 ± 0.05</td>
<td>1.93 ± 0.08</td>
<td>1.94 ± 0.06</td>
<td>1.90 ± 0.05</td>
</tr>
<tr>
<td>cnr1WT</td>
<td>1.99 ± 0.02</td>
<td>1.95 ± 0.05</td>
<td>1.93 ± 0.08</td>
<td>2.01 ± 0.05</td>
</tr>
<tr>
<td>cnr1KO</td>
<td>2.15 ± 0.01</td>
<td>1.95 ± 0.09</td>
<td>1.91 ± 0.05</td>
<td>1.99 ± 0.03</td>
</tr>
<tr>
<td>cnr2WT</td>
<td>2.04 ± 0.06</td>
<td>2.07 ± 0.05</td>
<td>1.95 ± 0.05</td>
<td>2.00 ± 0.04</td>
</tr>
<tr>
<td>cnr2KO</td>
<td>2.16 ± 0.12</td>
<td>2.06 ± 0.04</td>
<td>1.96 ± 0.03</td>
<td>1.96 ± 0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume (mL/g)%</th>
<th>Saline i.paw</th>
<th>Morphine i.paw</th>
<th>Saline i.t.</th>
<th>Morphine i.t.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>0.88 ± 0.03</td>
<td>0.90 ± 0.03</td>
<td>0.85 ± 0.02</td>
<td>0.83 ± 0.04</td>
</tr>
<tr>
<td>cnr1WT</td>
<td>0.82 ± 0.04</td>
<td>0.87 ± 0.05</td>
<td>0.81 ± 0.06</td>
<td>0.72 ± 0.03</td>
</tr>
<tr>
<td>cnr1KO</td>
<td>0.83 ± 0.02</td>
<td>0.85 ± 0.04</td>
<td>0.76 ± 0.04</td>
<td>0.76 ± 0.03</td>
</tr>
<tr>
<td>cnr2WT</td>
<td>0.88 ± 0.03</td>
<td>0.79 ± 0.04</td>
<td>0.77 ± 0.04</td>
<td>0.76 ± 0.05</td>
</tr>
<tr>
<td>cnr2KO</td>
<td>0.83 ± 0.02</td>
<td>0.79 ± 0.03</td>
<td>0.73 ± 0.04</td>
<td>0.72 ± 0.03</td>
</tr>
</tbody>
</table>

Maximal thickness and edema were evaluated 60 min after formalin injection into the left hind paw. Data are expressed as means ± SEM (n = 6 per group).

*Maximal thickness was measured with a digital micrometer and expressed in mm.

The volume of the inflamed hind paw was determined by water displacement using a plethysmometer and expressed as the percentage of paw volume relative to the total body weight of the animal (mL/g).
i.paw and i.t. morphine (Figs. 2, 3, 5 and 6), s.c. morphine significantly reduced the formalin-induced nocifensive behaviors in the inflammatory phase in the \textit{cnr1} KO and the \textit{cnr2} KO mice (Fig. 7). Hence, pain behaviors following the injection of s.c. morphine were not different within genotypes in both phases of the formalin test (Fig. 7A; $P = 0.9622$, $F_{\text{genotypes}} = 0.04$, two-way ANOVA). Notably, s.c. morphine had no antinociceptive effects in the acute phase: there were no differences in the antinociceptive effects of s.c. morphine when the acute phase of the formalin test was analyzed (Fig. 7B; A.U.C., $F = 0.55$, one-way ANOVA) nor when the inflammatory phase of the formalin test was analyzed (Fig. 7C; A.U.C., $F = 0.01$, one-way ANOVA). The numbers in parentheses represent the number of animals per group. Data are expressed as means \pm SEM.

Fig. 7. Antinociceptive effects of s.c. morphine are maintained in the mouse formalin test. All three genotypes (C57BL/6, \textit{cnr1}KO and \textit{cnr2}KO) present similar biphasic nociceptive behavioral profiles following morphine 3 mg/kg s.c. injection (10 min prior to formalin injection). (A) In the late phase of the formalin test, the analgesic effects of s.c. morphine are preserved in \textit{cnr1}KO and \textit{cnr2}KO mice. (B) The A.U.C. analysis indicates that s.c. morphine preserves its analgesic effectiveness in the early phase of the formalin test. (C) The A.U.C. analysis of the late phase also reveals that s.c. morphine preserves its analgesic properties. The numbers in parentheses represent the number of animals per group. Data are expressed as means \pm SEM.
Together, our results demonstrate that in contrast to i.paw and i.t. morphine, s.c. morphine preserved its antinociceptive properties in the cnr1KO and the cnr2KO mice in the inflammatory phase of the formalin test and, therefore, suggest that cannabinoid receptors do not significantly contribute to the analgesic effects of s.c. morphine.

Cannabinoid receptors are not involved in the antinociceptive effects of s.c. morphine in the hot-water immersion tail-flick test

To test whether cannabinoid receptors are involved in the antinociceptive effects of s.c. morphine in acute pain relief, we used the hot-water immersion tail-flick test (tail immersion test in a water bath at 52 °C) to measure the antinociceptive effects of 1, 3 and 10 mg/kg s.c. morphine. As shown in Fig. 8A–C, genotype did not produce any significant difference in the baseline latency to tail withdrawal compared to C57BL/6 mice (\(P = 0.1904 \), \(F_{\text{genotypes}} = 1.572 \), two-way ANOVA). In all genotypes, s.c. morphine produced a time- and dose-dependent analgesia that peaked at 20 min post-injection (\(P < 0.0001 \), \(F_{\text{time}} = 64.57 \) for 1 mg/kg s.c. morphine; \(P < 0.0001 \), \(F_{\text{time}} = 163.7 \) for 3 mg/kg s.c. morphine; \(P < 0.0001 \), \(F_{\text{time}} = 583.2 \) for 10 mg/kg s.c. morphine, two-way ANOVA). Latency to tail withdrawal returned to baseline by 40 to 60 min after the s.c. morphine injection. The %MPE values of s.c. morphine were calculated from the latencies to tail withdrawal that were obtained 20 min post-injection (Fig. 8D). At any dose, the analgesic effect of s.c. morphine did not differ between genotypes; %MPE_{1mg/kg} (16.0 ± 2.3% for C57BL/6, 18.3 ± 1.1% for cnr1WT, 12.3 ± 2.5% for cnr1KO, 19.9 ± 2.4% for cnr2WT and 18.3 ± 1.0% for cnr2KO; \(F = 2.26 \)). %MPE_{3mg/kg} (37.7 ± 2.6% for C57BL/6, 37.5 ± 2.3% for cnr1WT, 33.6 ± 1.8% for cnr1KO, 40.1 ± 2.5% for cnr2WT and

![Graphs](https://example.com/graphs)

Fig. 8. Antinociceptive effects of s.c. morphine are maintained in the mice tail-flick test. Tail-flick latencies (s) to noxious heat (tail immersion in water at 52 °C) were recorded every 10 min (from 0 to 60 min) following the s.c. injection of morphine 1, 3 and 10 mg/kg in C57BL/6, cnr1WT, cnr1KO, cnr2WT and cnr2KO male mice. (A–C) Morphine at 1, 3 and 10 mg/kg produced significant time-dependent antinociception with no difference between genotypes. (D) The %MPE of s.c. morphine at 20 min (peak antinociceptive effects) was calculated for each dose tested. There were no significant differences between genotypes compared to C57BL/6 for each dose tested; thus, genotype did not modify the antinociceptive effects of morphine (one-way ANOVA with Bonferroni’s post hoc test). The numbers in parentheses represent the number of animals per group. Data are expressed as means ± SEM.
39.9 ± 2.2% for cnr2KO; F = 1.30) and %MPE 10mg/kg (93.7 ± 2.9% for C57BL/6, 86.7 ± 1.2% for cnr1WT, 91.2 ± 3.0% for cnr1KO, 95.0 ± 2.2% for cnr2WT and 87.8 ± 3.6% for cnr2KO; F = 1.80, one-way ANOVA).

No differences were detected in spinal MOP expression between the wild-type and the knockout mice using immunofluorescence

In an effort to determine whether the inactivation of CB1 or CB2 receptors affects the expression pattern of MOP, we first compared the MOP-like immunofluorescence staining in spinal cords of the cnr1WT (Fig. 9A), cnr1KO (Fig. 9B), cnr2WT (Fig. 9C), and cnr2KO mice (Fig. 9D). Although qualitative (at best), the immunofluorescence labeling revealed similar expression patterns of MOP in laminae I and II of the dorsal horn of the spinal cord in all genotypes.

No differences were detected in spinal MOP expression and binding properties between wild-type and knockout mice using saturation binding assays

To verify if the loss of the antinociceptive effects of morphine in the cnr1KO and the cnr2KO mice could be the consequence of a lower level of MOP expression or of altered binding capacities, we performed saturation binding assays in spinal cord membrane extracts from these mice. As shown in Table 2, [3H]-DAMGO saturation binding assays revealed that the level of spinal MOP (B_{max}) did not significantly differ between the cnr1WT and the cnr1KO mice ($P = 0.8759$, $t = 0.1664$ and df = 4) or between the cnr2WT and the cnr2KO mice ($P = 0.8916$, $t = 0.1452$ and df = 4). We further found that the affinity (K_d) of DAMGO for spinal MOP remained unchanged between the cnr1WT and the cnr1KO mice ($P = 0.5616$, $t = 0.6322$ and df = 4) and between the cnr2WT and the cnr2KO mice ($P = 0.2424$, $t = 1.370$ and df = 4, two-tailed unpaired t-test). Thus, differences observed in i.paw and i.t. morphine analgesic effectiveness are apparently not caused by decreases in the levels of expression or reduced binding affinity of MOP in cnr1KO and cnr2KO mice, at least at the level of the spinal cord.

Table 2. Binding properties of spinal MOP

<table>
<thead>
<tr>
<th></th>
<th>B_{max} (fmol/mg)</th>
<th>K_d (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnr1WT</td>
<td>44.50 ± 2.34</td>
<td>1.75 ± 0.27</td>
</tr>
<tr>
<td>cnr1KO</td>
<td>43.43 ± 5.99</td>
<td>2.32 ± 0.86</td>
</tr>
<tr>
<td>cnr2WT</td>
<td>34.32 ± 5.82</td>
<td>2.21 ± 1.03</td>
</tr>
<tr>
<td>cnr2KO</td>
<td>33.23 ± 4.74</td>
<td>4.70 ± 1.50</td>
</tr>
</tbody>
</table>

[3H]-DAMGO saturation binding assays were performed in mouse spinal cord preparations. Data are expressed as means ± SEM (n = 3 per group).

a B_{max} represents the amount of MOP binding sites in spinal cord of mice expressed as fmol/mg of protein.
b K_d represents the affinity of [3H]DAMGO for MOP in the spinal cord extracts and is expressed in nM.
DISCUSSION

In the present study, we demonstrated that the inactivation of either CB1 or CB2 receptors in mice impairs the analgesic effects of i.paw and i.t. morphine when assessed with the formalin test. By contrast, the analgesic effectiveness of s.c. morphine was preserved in these transgenic mice, both in the formalin test and in the hot water immersion tail-flick test. We found that the loss of analgesic effectiveness of morphine was neither the consequence of impaired expression and binding properties of MOP, nor of its G protein coupling efficiency. Although we have not identified the exact mechanisms by which cannabinoid receptors influence morphine-induced analgesia, our findings further support the existence of a functional interaction between the cannabinoid and opioid systems, at least in the periphery and in the spinal cord.

It is now well recognized that the endocannabinoid and opioid systems share similar distributions in several brain areas as well as in the spinal cord and in the peripheral sites of pain processing (Di Marzo, 2008; Bodnar, 2012). Even if the molecular and cellular mechanisms involved in this process are not clearly established, cannabinoids and opioids are known to produce analgesic synergy in various animal models of pain (Welch, 2009; Parolaro et al., 2010). Indeed, previous studies using selective cannabinoid receptor antagonists have suggested that CB1 receptors are involved in peripheral (da Fonseca Pacheco et al., 2008) and central morphine antinociception (Pacheco Dda et al., 2009) and that CB2 receptors are partially involved in these effects (da Fonseca Pacheco et al., 2008). By contrast, the antinociceptive effects of systemic morphine remained unaffected by CB1 receptor ablation in response to both chemical (Miller et al., 2011) and thermal noxious stimuli (Ledent et al., 1999; Valverde et al., 2000; Miller et al., 2011). In fact, the roles of CB1 receptors described by pharmacological studies performed in wild-type mice were often not confirmed by studies using cnr1KO mice (Miller et al., 2011; Raffa and Ward, 2012). Notably, most studies using pharmacological tools have employed the high-affinity CB1 antagonist/inverse agonist AM251 to investigate potential interactions between MOP and CB1 receptors (Trang et al., 2007; da Fonseca Pacheco et al., 2008; Haighparast et al., 2009; Pacheco Dda et al., 2009). However, AM251 was recently found to display direct antagonist properties with respect to MOP (Seely et al., 2012). Therefore, some of the reported effects of this antagonist on MOP functions may not be mediated by the CB1 receptors but rather by a direct action on MOP (Seely et al., 2012), which might explain the discrepancies between pharmacological and genetic approaches (Miller et al., 2011).

To better characterize the roles of the CB1 and CB2 receptors in modulating the opioid system, we studied the impact of disrupting these receptors on morphine-induced analgesia in mice. While our experiments, performed in knockout animals, exclude potential confounding effects of cannabinoid receptor antagonists, one could still argue that genetically modified mice may develop unidentified adaptations that could mask the role of cannabinoid receptors (Miller et al., 2011). However, it was shown that disruption of CB1 receptors did not alter the mRNA levels of MOP in mouse dorsal root ganglia and spinal cord (Hojo et al., 2008). By contrast, cnr1KO mice were shown to have increased brain levels of substance P, enkephalin, and dynorphin (Zimmer et al., 1999). Regarding opioids, this observation might indicate a role for CB1 in the tonic regulation of these peptides rather than a consequence of developmental adaptation. Although there is still no information regarding putative developmental changes in response to CB2 receptor inactivation, there is no reason to believe that the loss of morphine analgesia observed in our study is the result of compensatory

Table 3. G protein coupling of spinal MOP

<table>
<thead>
<tr>
<th></th>
<th>EC50a (nM)</th>
<th>Emaxb (Percentage increase over basal binding: %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>87.50 ± 26.80</td>
<td>29.73 ± 2.93</td>
</tr>
<tr>
<td>cnr1WT</td>
<td>121.20 ± 38.25</td>
<td>31.86 ± 1.09</td>
</tr>
<tr>
<td>cnr1KO</td>
<td>105.50 ± 26.93</td>
<td>38.01 ± 3.82</td>
</tr>
<tr>
<td>cnr2WT</td>
<td>127.60 ± 43.76</td>
<td>37.99 ± 6.97</td>
</tr>
<tr>
<td>cnr2KO</td>
<td>93.81 ± 15.82</td>
<td>46.83 ± 5.58</td>
</tr>
</tbody>
</table>

(35S)GTPγS binding assays were performed in mouse spinal cord membrane preparations. Data are expressed as means ± SEM (n = 3 per group).

a The potency (EC50) of morphine was determined as the concentration (nM) required to reach 50% of the maximal possible effect (i.e., 50% of the maximal (35S)GTPγS binding).

b The efficacy (Emax) represents the maximum functional response induced by morphine, i.e., maximal (35S)GTPγS binding, and is expressed as the percentage increase over basal binding (%).
receptors were receptors. or CB 2 receptors (Bushlin et al., 2012), therefore inactivation. It is therefore unlikely that the loss agonist) may be rapidly receptors, thus receptors co-
receptor-mediated signaling following MOP receptors. Hence, it has been demonstrated that MOP and CB 1 receptors co-localize in the same cells (Rios et al., 2006). Physical interaction between the MOP and the CB 1 receptors was also evidenced by another group that used electrophysiological approaches to demonstrate the existence of a functional heterodimer (Hojo et al., 2008). In vivo, heterodimer formation requires that both receptors co-localize in the same neuron. Hence, it has been demonstrated that MOP and CB 1 receptors co-localize in dendritic spines in the caudate putamen, periaqueductal gray, dorsal horn of the spinal cord and presynaptic terminals (Hohmann et al., 1999; Rodriguez et al., 2001; Salio et al., 2001; Pickel et al., 2004; Vigano et al., 2005; Wilson-Poe et al., 2012). Another study has recently described functional interactions between forebrain MOP and CB 2 receptors and the impact of this interaction on agonist-mediated signaling (Paldyova et al., 2008). There is growing evidence that heterodimerization can generate receptors with novel pharmacological properties (Jordan and Devi, 1999; Bouvier, 2001; Devi, 2001). Indeed, the attenuation of CB 1 receptor-mediated signaling following MOP activation (Rios et al., 2006) or a decrease in the functions of MOP induced by the constitutive activity of CB 1 receptors (Canals and Milligan, 2008) have been shown. A recent study demonstrated that there is a decrease in DOP activity associated to its interaction with CB 1 receptors (Bushlin et al., 2012), therefore suggesting that cannabinoid receptors may have important impacts on opioid receptor functions. In the present study, we have demonstrated that there were no significant differences in the pattern of spinal MOP expression nor in its binding properties in wild-type mice compared to cnr1KO and cnr2KO mice. Moreover, we found that both the efficacy and the potency of spinal MOP’s G protein coupling remained unaffected by CB 1 or CB 2 inactivation. It is therefore unlikely that the loss of morphine analgesia in cnr1KO and cnr2KO mice is the consequence of spinal MOP malfunction or downregulation due to the absence of MOP’s heterodimerization with either CB 1 or CB 2 receptors. Admittedly however, our experimental design cannot exclude the possibility that cannabinoid receptors interfered with intracellular pathways of MOP, downstream of G proteins.

One could argue that the loss of morphine analgesia in cnr1KO and cnr2KO mice can be the consequence of a direct effect of morphine on cannabinoid receptors. However, the analgesic effects of morphine were often shown to be completely abolished in MOP KO animals demonstrating that the effects of morphine is mainly mediated by this receptor, at least in vivo (Matthes et al., 1996; Sora et al., 2001; Mizoguchi et al., 2003). Another mechanism that may explain our observations is the possibility that transgenic mice have a disrupted basal endocannabinoid tone that impairs the ability of i.paw and i.t. morphine to produce antinociception. Endocannabinoids were in fact shown to be involved in the regulation of antinociception following i.paw (da Fonseca Pacheco et al., 2008) and intracerebroventricular (i.c.v.) (Pacheco Dda et al., 2009) injections of morphine. Indeed, although brain levels of endocannabinoids remained unchanged after the acute administration of morphine, chronic treatment with morphine produced a widespread decrease in brain 2-arachidonoylglycerol (2-AG) without significantly changing anandamide levels (Vigano et al., 2003). In support of a role of endocannabinoids in i.paw and i.t. morphine-induced analgesia, we observed different consequences of CB 1 and CB 2 receptors invalidation in the antinociceptive effects of morphine on the two phases of the formalin test. While we found that morphine analgesia was attenuated in both phases of the formalin test in the cnr1KO mice, the cnr2KO mice only showed different effects of morphine-induced analgesia in the inflammatory phase. A possible interpretation of these results is that following i.paw and i.t. morphine administration, anandamide (high-affinity CB 1 agonist/low-affinity CB 2 agonist) may be rapidly released to primarily act at CB 1 receptors, thus participating in the attenuation of the early stages of nociception of the formalin test. In cnr1KO mice, the analgesic effect of anandamide on the first phase of the formalin test would be absent while it would remain unchanged in cnr2KO mice (due to the presence of CB 2). By contrast, the release of the non-selective endogenous 2-AG may produce a more sustained modulatory effect on inflammatory pain via both CB 1 and CB 2 receptors.

At first glance, it might appear puzzling that s.c. morphine-induced analgesia remained unaffected in both the formalin test and the tail-flick test. Indeed, previous studies have demonstrated that morphine analgesic efficacy requires activity at both spinal and supraspinal sites (Siuciak and Advokat, 1989; Miaskowski et al., 1993; Rossi et al., 1993; Kolesnikov et al., 1996). Analgesic synergy between MOP and CB 1 receptor agonists, ibuprofen, and paracetamol (the latter modulate cannabinoid synthesis) was also shown to play an important role in morphine analgesia (Fletcher et al., 1997; Kolesnikov et al., 2003; Tham et al., 2005; Kolesnikov and Soritsa, 2008; Mitchell et al., 2010). Based on these studies, it would have been logical to observe an attenuation of the analgesic efficacy of systemic morphine due to a lack/reduction of a spinal contribution. However, we found that the analgesic potency of s.c. morphine was preserved in both the formalin and the hot water immersion tail-flick tests. Our observations rather suggest that systemic morphine principally act via a neuronal network independent of cannabinoid receptors which therefore remain unaffected.
in cnr1KO and cnr2KO mice. Consequently, the participation of spinal MOP in the analgesic effects of systemic morphine would be minimal since i.t. morphine analgesia is impaired in the same genotypes. In support to this hypothesis, a series of studies have shown that systemic morphine produces antinociception principally via the activation of descending inhibitory projections releasing serotonin in the dorsal horn of the spinal cord (Kuraishi et al., 1983; Giordano and Barr, 1988; Dogrul and Seyrek, 2006; Dogrul et al., 2009). The latter studies in fact revealed that blockade of spinal serotonin receptors or pharmacological depletion of serotonin in the spinal cord attenuates the analgesic effects of systemic and intracranial morphine (Kuraishi et al., 1983; Giordano and Barr, 1988; Dogrul and Seyrek, 2006; Dogrul et al., 2009) as well as other opioid receptor agonists such as tramadol (Yanarates et al., 2010).

CONCLUSION

We have demonstrated that peripheral and spinal antinociceptive effects of morphine were decreased in the inflammatory phase of the formalin test in cnr1KO and cnr2KO mice, whereas its systemic effects were preserved. These observations further support the existence of interactions between the cannabinoid and opioid systems. The loss of peripheral and spinal morphine analgesia is apparently caused neither by a decrease in MOP spinal expression nor by altered binding properties or G protein coupling of this receptor in cnr1KO and cnr2KO mice. The mechanisms underlying the loss of morphine analgesia are not clear but could include the release of endogenous cannabinoids in structures along the pain pathway or a disrupted endocannabinoid tone.

CONFLICT OF INTEREST

The authors report no conflict of interest.

Acknowledgments—The authors are thankful to Hélène Beauty, Kristina Rochon, Sophie Charron, and Florence Dotigny for providing technical assistance with immunofluorescence experiments, saturation binding assays, and transgenic animals. We would also like to thank Dr. Michael Bruchas for advice with the GTPγS assay. This work was supported by a grant from the Fonds de Recherche Québec – Santé (FRQS)-funded Quebec Pain Research Network (QPRN) to PB-LG and from the Canadian Institutes of Health Research (CIHR) to LG. JD is supported by a Vanier Canada Graduate Scholarships (i204685) from the CIHR. LG and JFB are recipients of FRQS Junior 2 salary supports. We would also like to thank Dr. Beat Lutz for providing the cnr1KO mice.

REFERENCES

Guindon J, Desroches J, Beaulieu P (2007) The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycero...

(Accepted 13 December 2013)

(Available online 21 December 2013)