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Abstract
Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the
visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed
in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro,
neurons obtained from gpr55 knock-out (gpr55-/-) mouse embryos have smaller GCs, less GC filopodia, and
have a decreased outgrowth compared with gpr55�/� neurons. When gpr55�/� neurons were treated with
GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an
increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia
number inducing chemo-repulsion. In absence of the receptor (gpr55-/-), no pharmacologic effects of the
GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55-/- mice revealed
a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of
retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN).
Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD,
an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the
targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon
refinement during development.
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Introduction
The G-protein-coupled receptor 55 (GPR55) is a 319-

amino acid protein that was identified, cloned, and
mapped to human chromosome 2q37 in 1999 (Sawz-
dargo et al., 1999). GPR55 is expressed in the CNS, as

well as in intestine, bone marrow, immune and endothelial
cells, spleen, and platelets (Sawzdargo et al., 1999; Ry-
berg et al., 2007; Waldeck-Weiemair et al., 2008; Pietr
et al., 2009; Balenga et al., 2011; Henstridge et al., 2011;
Rowley et al., 2011). GPR55 is phylogenetically distinct
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Significance Statement

The implication of a novel G-protein-coupled receptor, GPR55, in neurodevelopment allows the identifica-
tion of new potential therapeutic targets for abnormal development and regeneration of the CNS.
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from the traditional cannabinoid receptors and shows low
amino acid identity compared with cannabinoid receptors
1 and 2: (CB1R, 13.5%; CB2R, 14.4%; Baker et al., 2006).
Despite its activation by several cannabinoid ligands,
GPR55 lacks the classical cannabinoid-binding pocket
present in both CB1R and CB2R (Petitet et al., 2006;
Kotsikorou et al., 2011). Therefore, GPR55 is likely a
receptor for small lipid mediators and some synthetic
cannabinoids and related molecules. The lipid lysophos-
phatidylinositol (LPI), which activates GPR55 but not
CB1R or CB2R, was the first endogenous ligand identified
for this receptor (Oka et al., 2007; Lauckner et al., 2008;
Waldeck-Weiermair et al., 2008; Henstridge et al., 2009;
Oka et al., 2009). A recent study showed that phospha-
tidyl-b-D-glucoside (PtdGlc), a membrane glycerophos-
pholipid (Nagatsuka et al., 2003) and its hydrolytic
derivative lyso-phosphatidyl-b-D-glucoside (LysoPtdGlc)
mediate guidance of nociceptive afferent axons in the
developing spinal cord via GPR55 (Guy et al., 2015). The
atypical synthetic cannabinoid O-1602, with no significant
binding affinity for either CB1 or CB2, also activates
GPR55 and is considered as a GPR55 agonist (Johns
et al., 2007; Ryberg et al., 2007; Pertwee, 2007; Waldeck-
Weiermair et al., 2008; Whyte et al., 2009; Romero-Zerbo
et al., 2011; Schicho et al., 2011; Sylantyev et al., 2013).
Conversely, cannabidiol, a constituent of cannabis sativa
and an analog of O-1602, is an effective GPR55 antago-
nist, with low affinity for CB1R/CB2R (Ryberg et al., 2007;
Pertwee, 2007; Ross, 2009; Whyte et al., 2009; Sylantyev
et al., 2013). GPR55 primarily signals via the activation of
ERK1/2 and RhoA pathways, the release of calcium from
intracellular stores, and the stimulation of several tran-
scriptional factors (Ryberg et al., 2007; Lauckner et al.,
2008; Henstridge et al., 2010). gpr55 mRNA is expressed
in numerous CNS-derived cells and tissues (Henstridge
et al., 2011) and the receptor appears to be expressed in
both neurons and glia (Pietr et al., 2009). GPR55 protein is
present in mouse dorsal root ganglia (Lauckner et al.,
2008), in the hippocampus (Sylantyev et al., 2013), and in
the adult vervet monkey retina (Bouskila et al., 2013).
Interestingly, a recent study using differentiated PC12
cells reported a role for GPR55 in neurite dynamics (Obara
et al., 2011). Based on these reports, it is plausible to
speculate that GPR55 plays a role during axonal naviga-
tion and refinement. Throughout development, the retinal
ganglion cell (RGC) axons navigate to their thalamic (dor-
sal lateral geniculate nucleus; dLGN) and midbrain (supe-
rior colliculus; SC) targets to form functional synaptic
connections (Erskine and Herrera, 2007). In the present
study, we assessed the role played by GPR55 during
axon growth and its possible implication in visual target

innervation. We used the rodent neurovisual system to
demonstrate a mechanism by which GPR55 influences
axon growth. We found that during development, neurons
express GPR55. Furthermore, in vitro and in vivo genetic
and pharmacologic manipulations of GPR55 affect RGC
axon growth and retinothalamic development. Impor-
tantly, we observed that the ERK1/2 and RhoA pathways
are necessary for GPR55-induced effects on growth cone
morphology and axon outgrowth. This study is the first
demonstration that GPR55 is expressed in the developing
CNS and plays an important role in axon navigation and
brain wiring.

Materials and Methods
Animal experimentation

All animal procedures were performed in accordance
with the relevant university’s animal care committee’s
regulations and approval. Male and female mice and ham-
sters were used in this study. No statistical differences
have been observed between both genders. All proce-
dures were performed in accordance with the guidelines
from the Canadian Council on Animal Care and the NIH
Guide for the care and use of laboratory animals, and
were approved by the ethics committee on animal re-
search of the Université de Montréal. The cnr1-/- mice in
which cnr1 is deleted were obtained from Beat Lutz (In-
stitute of Physiological Chemistry and Pathobiochemistry,
University of Mainz, Germany). The cnr2 mice in which
CB2 is not functional were purchased from The Jackson
Laboratory. The gpr55-/- mice were acquired from the
Texas Institute for Genomic Medicine. For all experi-
ments, heterozygous females and males were mated to
generate gpr55�/� and gpr55-/- littermates. Animal proce-
dures involving gpr55 mice were approved by the Indiana
University Bloomington Institutional Animal Care and Use
Committee and were conducted in compliance with the
U.S. Department of Health and Human Services guide-
lines. All the surgical procedures were carried out under
deep general anesthesia using either hypothermia (pups
� P4) or isoflurane (pups �P4 and adults).

Reagents
Bovine serum albumin (BSA), brain-derived neurotrophic

factor (BDNF), ciliary neurotrophic factor (CNTF), DNase, fors-
kolin (FSK), Hoechst 33258, insulin, laminin, monoclonal anti-
�-actin, monoclonal anti-MAP Kinase (diphosphorylated ERK-
1/2), poly-D-lysine, progesterone, putrescine, pyruvate,
selenium, LPI from soybean, and trypsin, triiodothyronine, DE-
PEC, triethyl ethanol amine, prehybridization solution, forma-
mide glutaraldehyde 50% solution were purchased from Sig-
ma-Aldrich. CBD, Tocrifluor (T1117), and O-1602 (5-methyl-4
[(1R,6R)-3-methyl-6-(1-cyclohexen-1-yl]-1,3-benzenediol) from
Tocris Bioscience. B27, N2, Dulbecco’s phosphate-buffered
saline (DPBS), fetal bovine serum (FBS), glutamine, neurobasal
media, penicillin-streptomycin, S-MEM, sodium pyruvate, and
AlexaFluor-conjugated secondary antibodies (AlexaFluor 488
and AlexaFluor 555) were purchased from Life Technologies.
The normal donkey serum (NDS), goat, and HRP coupled sec-
ondary antibodies raised against rabbit IgG (H�L) or mouse
IgM (� chain specific) were from Jackson ImmunoResearch.
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Rabbit-anti-mouse-macrophage was obtained from Accurate
Chemical. Anti-ERK1/2 and anti-GAP-43 were acquired from
EMD Millipore. Anti-RhoA and anti-phosphorylated RhoA were
purchased from Santa Cruz Biotechnology. Anti-PKA, anti-
phosphorylated PKA, anti-AKT and anti-phosphorylated AKT
were purchased from Cell Signaling. The antibody directed
against GPR55 (Kumar et al., 2012; Bouskila et al., 2013), the
ROCK1 inhibitor (Y-27632) and the GPR55 blocking peptide
were purchased from Cayman Chemical. ERK 1/2 inhibitor
(CI-1040) was obtained from Selleck Chemicals. LNAC was
acquired from EMD. Avidin-biotin-peroxidase complex ABC Kit
and donkey anti-goat biotinylated secondary antibody were
obtained from Vector Laboratories. The B fragment of the chol-
era toxin (CTb) and goat-anti-CTb were from List Biological
Laboratories. Buffer kit, RnaseA buffer, and SSC buffer were
from Ambion.

Tissue preparation for immunohistochemistry
Newborn hamsters were deeply anesthetized by hypo-

thermia, whereas adult mice were euthanized by an
overdose of isoflurane. A transcardiac perfusion was con-
ducted with phosphate-buffered 0.9% saline (PBS; 0.1M,
pH 7.4), followed by phosphate-buffered 4% paraformal-
dehyde (PFA), until the head was fixed. The nasal part of
the eyes of hamsters, mouse embryos, and adult mice
was marked with a suture and removed. Two small holes
were made in the cornea before a first postfixation in 4%
PFA for a period of 30 min. The cornea and lens were
removed and the eyecups were postfixed for 30 min in 4%
PFA. The eyecups were then washed in PBS, cryopro-
tected in 30% sucrose overnight, embedded in Neg 50
tissue Embedding Media (Fisher Scientific), flash-frozen,
and kept at �80°C. Sections (14 �m thick) were cut with
a cryostat (Leica Microsystems) and placed on gelatin/
chromium-coated slides.

Immunohistochemistry
The presence of GPR55 during the early development

of the mouse and hamster retinas was investigated by
immunohistochemistry. Retinal sections were washed in
0.1 M PBS, postfixed for 5 min in a 70% solution of
ethanol, rinsed in 0.03% Triton X-100 in buffered saline,
and blocked in 10% NDS and 0.5% Triton X-100 in buff-
ered saline for 1 h. The sections were then coincubated
overnight with rabbit anti-GPR55 antibody. After incuba-
tion with the primary antibody, the sections were washed
in buffered saline, blocked for 30 min, and incubated for 1
h with secondary antibody: AlexaFluor donkey anti-rabbit
488. Because of the absence of immunoreactivity of sev-
eral antibodies labeling the ganglion cells during the em-
bryonic development of the mouse retina, we used a
nucleus marker (Sytox) to visualize the cell somas. After
washes, the sections were mounted with a homemade
PVA-Dabco mounting media.

Fluorescent in situ hybridization
All solutions used for the fluorescent in situ hybridization

experiments were prepared with RNase-free reagents and
diethylpyrocarbonate (DEPC)-treated double-deionized wa-
ter (ddH2O). Glassware and instruments were RNase-
decontaminated using RNase away solution (Fisher

Scientific). Probes were designed in our laboratory and
made by Sigma-Aldrich. In situ hybridization to detect
gpr55 mRNA was performed following the instructions as
described by Zangenehpour and Chaudhuri (2001). For
detection of each species’ gpr55 RNA, two specific
probes were used, and all were coupled to a fluorescent
dye: 6-fluorescein phosphoramidite (6-FAM). As a positive
control, a poly-T probe was used. Primer sequences (5’-
3’) for in situ hybridization are as follows:

Mouse Probe 1: [6FAM]ACATGCTGATGAAGTAGAG-
GCA

Mouse Probe 2: [6FAM]TTGGTTCTTCTGCTTCATACA
Hamster Probe 1: [6FAM]TGAAGCAGATGGTGAAGA-

CACT
Hamster Probe 2: [6FAM]AGTTGCAGGAACAAGCT-

GATGT
The mouse probes were based on the truncated se-

quence of nucleotides in gpr55-/- mice. Pictures showing
expression patterns were taken using a Leica TCS SP2
confocal microscope (Leica Microsystems).

Retinal explant culture
The retinas were isolated from mouse embryonic day

(E)14/15 embryos, dissected into small segments in ice-
cold DPBS and platted on 12 mm glass coverslips previ-
ously coated with poly-D-lysine (20 �g/ml) and laminin (5
�g/ml) in 24-well plates. The explants were cultured in
neurobasal supplemented with 100 U/ml penicillin, 100
�g/ml streptomycin, 5 �g/ml LNAC, 1% B27, 40 ng/ml
selenium, 16 �g/ml putrescine, 0.04 ng/ml triiodothyro-
nine, 100 �g/ml transferrin, 60 ng/ml progesterone, 100
�g/ml BSA, 1 mM sodium pyruvate, 2 mM glutamine, 10
ng/ml CNTF, 5 �g/ml insulin, and 10 �M FSK at 37°C and
5% CO2. At 0 days in vitro (DIV; 1 h after plating), the
explants were treated for 15 h for projection analysis or for
1 h at 1 DIV for growth cone analysis. Photomicrographs
were taken using an Olympus IX71 microscope (Olympus)
and analyzed with Image Pro Plus 5.1 software (Media
Cybernetics). The total length of axon bundles was quan-
tified and expressed as mean � SEM. Statistical signifi-
cance of differences between means was evaluated by
ANOVA with Bonferroni’s post hoc test (Systat Software).

Purified retinal ganglion cell culture
RGCs from P7–P8 mice (Charles River Laboratories)

were purified and cultured according to a protocol previ-
ously described by Barres et al. (1988). In brief, following
enucleation, retinas were dissected and enzymatically
dissociated, at 37°C for 30 min, in a papain solution (15
U/ml in DPBS) containing 1 mM l-cysteine. The retinas
were then triturated sequentially, with a 1 ml pipette, in a
solution containing ovomucoid (1.5 mg/ml), DNase
(0.004%), BSA (1.5 mg/ml), and rabbit antibodies directed
against mouse macrophages (1:75) to yield a suspension
of single cells. The suspension was centrifuged and
washed in a high concentration ovomucoid-BSA solution
(10 mg/ml for each in DPBS). The dissociated cells were
resuspended in DPBS containing BSA (0.2 mg/ml) and
insulin (5 �g/ml). RGCs were purified using the two-step
panning procedure (Barres et al., 1988; Meyer-Franke
et al., 1995). Briefly, to remove macrophages, the retinal
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suspension was incubated at room temperature in Petri
dishes coated with affinity-purified goat anti-rabbit IgG
(H�L). The nonadherent cells were then transferred to a
Petri dish that had been coated with affinity-purified goat
anti-mouse IgM (� chain specific) followed by anti-Thy-
1.2 monoclonal IgM. The adherent RGCs were first re-
leased enzymatically by incubating them in a 0.125%
trypsin solution at 37°C and 5% CO2 followed by manu-
ally pipetting an enzyme inhibitor solution (30% FBS in
neurobasal) along the surface of the dish. Purified RGCs
were plated on poly-D-lysine- (10 �g/ml) and laminin- (5
�g/ml) coated glass coverslips (number 0 Deckgläser;
Carolina Biological) in 24-well plates. RGCs were cultured
in 600 �l of serum-free medium modified from Bottenstein
and Sato (1979). Neurobasal media was supplemented
with B27, selenium, putrescine, triiodothyronine, transfer-
rin, progesterone, pyruvate (1 mM), glutamine (2 mM),
CNTF (10 ng/ml), BDNF (50 ng/ml), insulin (5 �g/ml), and
FSK (10 �M). RGCs were cultured at 37°C and 5% CO2.
All experiments on purified RGCs were performed 36–40
h following plating.

Primary neuron culture
Primary cortical neurons were used in this study be-

cause of the large amount of neurons that can easily be
cultured and harvested for biochemical assays, which is
not possible with RGCs. Cnr1, cnr2, and gpr55 pregnant
knock-out mice and their respective wild-type (WT) con-
trols were used. CD1 staged pregnant mice were ob-
tained from Charles River Laboratories. E14/15 embryo
brains were dissected and the superior layer of each
cortex was isolated and transferred in 2ml S-MEM at 37°C
with 2.5% trypsin and 2 mg/ml DNase for 15 min. Pellet
was transferred into 10 ml S-MEM with 10% FBS and
stored at 4oC. After centrifugation, pellet was again trans-
ferred in 2 ml S-MEM supplemented with 10% FBS and
triturated 3 to 4 times. The supernatant was transferred in
10 ml neurobasal medium. Dissociated cells were
counted and plated at 50,000 cells per well on 12 mm
glass coverslips previously coated with poly-D-lysine (20
�g/ml). Neurons were cultured for 2 d in neurobasal me-
dium supplemented with 1% B-27, 100 U/ml penicillin,
100 �g/ml streptomycin, 0.25% N2, and 0.5 mM glu-
tamine. Neurons were treated with either GPR55 agonists
(1 �M LPI or 300 nM O-1602), a GPR55 antagonist (300 nM

CBD), ERK 1/2 inhibitor (20 �M CI-1040), ROCK1 inhibitor
(20 �M Y27632), for 60 min for growth cone (GC) morphol-
ogy or 2, 5, 10 and 15 min for ERK-1/2, RhoA, AKT, and
PKA protein quantification using Western blots.

Growth cone behavior assay
Embryonic retinal explants were cultured on a cover-

glass in a borosilicate chamber (Lab-Tek) for 2 DIV and
placed in an incubator mounted on an inverted micro-
scope. They were kept at 37°C and 5% CO2 with a Live
Cell chamber (Neve Bioscience) throughout the whole
experiment. A microgradient was created using a Pico-
plus micro-injector (Harvard Apparatus). Glass micropi-
pettes with a diameter of the tip of 2-3 �m were
positioned at 45° and at 100 �m away from the GC of
interest (Argaw et al., 2011; Duff et al., 2013).

Immunocytochemistry
After treatments, retinal explants and primary cortical

neuron cultures were washed with PBS, pH 7.4, fixed in
4% PFA, pH 7.4, and blocked with 2% NGS and 2% BSA
in PBS containing 0.1% Tween 20, pH 7.4, for 30 min at
room temperature. Neurons were then incubated over-
night at 4°C in blocking solution containing anti-GAP-43
(1:1,000) for GC morphology analysis, anti-GPR55 (1:500)
or Tocrifluor T1117 (3�M) for GPR55 protein expression,
MAP2 (1:500) or NFM (1:500). The following day, neurons
were washed and labeled with AlexaFluor secondary an-
tibodies (488 and 555) and Hoechst 33258, and the cov-
erslips were mounted with a homemade Dabco-PVD
mounting media (Ono et al., 2001).

Western blot analysis
Mouse embryos or pups were euthanized at various

ages, namely: E14/15, E16/17, E18/19, postnatal day (P)1,
and P3. Following deep anesthesia by hypothermia, eyes
were immediately removed for Western blot analysis. Ret-
inas were dissected on ice, homogenized by hand in
radioimmunoprecipitation assay (RIPA) buffer (150 mM

NaCl, 20 mM Tris, pH 8.0, 1% NP-40, 0.1% SDS, 1 mM

EDTA). This buffer was supplemented with a protease
inhibitor mixture [aprotinin, leupeptin, pepstatin (1 �g/ml)
and phenylmethylsulfonyl fluoride (0.2 mg/ml); Roche Ap-
plied Science]. Samples were then centrifuged at 13,000
rpm at 4°C for 10 min and supernatants were removed
and stored. Protein content was equalized using BCA
Protein Assay kit (Thermo Scientific). In another set of
experiments, primary cortical neurons were cultured for 2
DIV at a density of �250,000 cells/dish in 35 mm poly-D-
lysine coated petri dishes. Following treatment, neurons
were washed once with ice-cold PBS, pH 7.4, and then
lysed with Laemmli sample buffer. Primary antibodies
were used at the following concentrations: anti-GPR55
(1:500), anti-�-actin (1:5,000), anti-AKT (1:1,000), anti-p-
AKT (1:1,000), anti-ERK1/2 (1:5,000), anti-p-ERK1/2 (1:
2,000), anti-RhoA (1:1,000), and anti-p-RhoA (1:1,000).
Results were visualized using homemade enhanced
chemiluminescent Western blot detection reagents (final
concentrations: 2.5 mM luminol, 0.4 mM p-coumaric acid,
0.1 M Tris–HCl, pH 8.5, 0.018% H2O2).

Intraocular injections
Syrian golden hamsters (Charles River Laboratories) are

born with a premature visual nervous system (Clancy
et al., 2001). These mammals were used for studies in-
vestigating the implication of GPR55 ligands during retinal
ganglion cell projection growth during development in
vivo. Twenty-four hours following birth, at P1, anesthe-
tized hamsters received a unilateral intraocular injection of
2 �l solution of CTb, with either 0.9% saline solution, 1 mM

of LPI or 300 �M of CBD. Briefly, to access to the right
eye, a small incision was made in the eyelids under an
operating microscope. A glass micropipette attached to a
10 �l Hamilton syringe was used for the injection. Inser-
tion of the micropipette into the vitreous was conducted
carefully at an angle to avoid damage to the lens. Follow-
ing the injection, we closed the eyelids using surgical glue
(Vetbond, 3M). The same surgical procedures were per-

New Research 4 of 20

September/October 2015, 2(5) e0011-15.2015 eNeuro.sfn.org



formed using P1 and adult gpr55�/� and gpr55-/- mice to
allow the detection of any morphologic or growth differ-
ence between the genotypes. For eye-specific segrega-
tion studies in the dLGN, gpr55-/- and gpr55�/� adult mice
received an intraocular injection of CTb conjugated to
AlexaFluor 555 into the left eye and CTb coupled to
AlexaFluor 488 into the right eye (2 �l; 0.5% in sterile
saline). Two or 4 d after the injection for mice (pups and
adults) and hamsters, respectively, the animals were
anesthetized and perfused transcardially with 0.1 M PBS,
pH 7.4, followed by 4% PFA in PBS. The brains were
removed, postfixed overnight at 4ºC and cryoprotected
by infiltration of buffered sucrose. Then, brains were fro-
zen and kept at �80ºC.

The effects of the intraocular injection of GPR55 agonist
and antagonist were visualized by immunohistochemistry
according to a protocol previously described in (Argaw
et al., 2008). Briefly, 40 �m thick coronal sections of tissue
were incubated in 90% methanol and 0.3% H2O2 in 0.1 M

PBS, pH 7.4, for 20 min. They were then rinsed and
incubated in 0.1 M glycine/PBS for 30 min, followed by an
overnight incubation (4°C) in PBS containing 4% NDS,
2.5% BSA, and 1% Triton X-100. The sections were
subsequently rinsed and immersed for 48 h at room tem-
perature in a solution containing goat anti-CTb diluted
1:4,000 in PBS with 2% NDS, 2.5% BSA, and 2% Triton
X-100. Afterward, the sections were rinsed and incubated
in 2% NDS and 2.5% BSA/PBS for 10 min. This was
followed by a 1 h incubation in donkey anti-goat biotinyl-
ated secondary antibody diluted 1:200 in PBS with 2%
NDS, 2.5% BSA, and 1% Triton X-100. Tissue was rinsed,
incubated in 2% NDS and 2.5% BSA in PBS for 10 min,
and subsequently processed by an avidin-biotin-
peroxidase complex ABC Kit (diluted 1:100 in PBS) for 1
h in the dark at room temperature. The sections were then
rinsed and preincubated in 3, 3=-diaminobenzidine tetra-
hydrochloride (DAB) in PBS for 5 min. The peroxidase
reaction product was visualized by adding 0.004% H2O2

to the DAB solution for 2–4 min. Sections were finally
washed five times (1 min each) with PBS, mounted on
gelatin-chromium alum-subbed slides, air-dried, dehy-
drated in ethanol, cleared in xylenes, and coverslipped
with Depex (EMS).

Quantification method
Photomicrographs were taken with an inverted Olym-

pus IX71 microscope (Olympus) and an Evolution VF cam-
era (MediaCybernetics). The images were quantified using
Image Pro Plus 5.1 image analysis software. The growth
of axon branches was quantified on consecutive photo-
micrographs of coronal slices of brain tissue comprising
the DTN. On each photomicrograph, the distance be-
tween the lateral border of the nucleus of interest and the
tips of the longest axon branches was measured. To take
into account for differences in brain sizes, axon branch
lengths were normalized with the interthalamic distance
(distance between the right and left lateral borders of the
thalamus). Axon collateral number was quantified on con-
secutive photomicrographs comprising the DTN using an
adaptation of the Sholl technique as described by Duff

et al. (2013). Values are expressed as the mean � SEM.
Statistical significance of differences between means was
evaluated by ANOVA with Bonferroni’s post hoc test (Sys-
tat).

For eye-specific segregation quantification in the
dLGN, images were collected and measured by an ob-
server “blind” to the experimental conditions to minimize
any bias. Universal gains and exposures were established
for each label. Raw images of the dLGN were imported to
MATLAB and an area of interest comprising the dLGN
was cropped excluding the ventral lateral geniculate nu-
cleus and the intergeniculate leaflet, then the degree of
left and right eye projection overlap was quantified using
an established multi-threshold method of analysis (Tor-
borg and Feller, 2004; Bjartmar et al., 2006; Stevens et al.,
2007). This approach allows for a better analysis of over-
lapping regions independent of the threshold. Values are
expressed as the mean � SEM. Significance of differ-
ences between means was evaluated by student t test
analysis (Systat).

Genotyping
Animals were genotyped as described by Wu et al. (2010).

Tail samples were immersed in 50 mM NaOH, boiled for 30 min,
vortexed vigorously for 10 s, and neutralized with 1 M Tris-HCl,
pH8.0. Tail lysates obtained were vortexed again for 10 s and
centrifuged at 16,100 � g for 1 min. PCR reactions were con-
ducted with a mixture of two primer pairs to generate the
following amplicons: the 441 bp for the WT gpr55 allele and the
301 bp for the neo allele. The primer sequence was for the WT
allele: 5=-GCCATCCAGTACCCGATCC-3= and 5=-
GTCCAAGATAAAGCGGTTCC-3= and for the gpr55 mutant
allele the sequence: 5=-GCAGCGCATCGCCTTCTATC-3= and
5=-TCAAGCTACGTTTTGGGTT-3=. The PCR cycle conditions
were: 5 min at 95°C, 36 cycles of three steps (50 s at 94°C, 40
s at 55°C, and 40 s at 72°C), then 5 min at 72°C using the
standard PCR reagents. A similar genotyping protocol was
performed on mouse genomic tail DNA using sense primers:
5 = - G C T G T C T C T G G T C C T C T T A A A - 3 = ; 5 = -
GGTGTCACCTCTGAAAACAGA-3= for the WT allele and 5=-
CCTACCCGGTAGAATTAGCTT -3= to detect the Cnr1-/- allele.
The primer sequences for the Cnr2 WT allele were 5=-
GGAGTTCAACCCCATGAAGGAGTAC-3= and

5=-GACTAGAGCTTTGTAGGTAGGCGGG-3= and for
the Cnr2 mutant allele, the sequence was 5=-
GGGGATCGATCCGTCCTGTAAGTCT-3=.

Results
GPR55 expression in the developing retina

We used hamster and mouse retinas to evaluate the
presence of GPR55 and its possible involvement during
retinal projection navigation. Both GPR55 protein and
mRNA were expressed in the hamster retina. At P1,
GPR55 protein was present in the ganglion cell (GCL),
ganglion cell fibers (GCFLs), inner plexiform (IPL) and
neuroblast (NBL) layers, whereas GPR55 mRNA was
present in the GCL (Fig. 1A–F). GPR55 protein was also
expressed in the GCL, GCFL, IPL, and NBL, whereas
GPR55 mRNA was localized in GCL in retina of E14/15
mouse embryos (Fig. 1G–L). GPR55 protein and mRNA
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Figure 1. GPR55 protein and mRNA expression in the retina. A–F, At P1, GPR55 protein and mRNA are expressed in the hamster
retina (A–C), expression of GPR55 protein in the ganglion cell layer (D–F). G–L,GPR55 protein and mRNA are present in the E14/15
mouse retina (G–I), especially for GPR55 protein in the ganglion cell layer (J–L). M–O, GPR55 protein and mRNA are expressed in the
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were both detected in the adult gpr55�/� mouse retina
(Fig. 1M–O) but not in the gpr55-/- retina (Fig. 1P–R).
Using Western blot, GPR55 protein was detected in the
brain and retina of mouse embryos and pups from E14/15
to P3. The signal was abolished in the presence of the
blocking peptide for the antibody (Fig. 2A,B). The same
antibody failed to detect GPR55 in retina homogenate
obtained from gpr55-/- mouse embryos (E14/15; Fig. 2C).
In E14/15 mice retinal explants, GPR55 was present in the
neurites; their GCs and filopodia (Fig. 2D). Explants ob-
tained from gpr55-/- embryos did not express GPR55 (Fig.
2E). Furthermore, GPR55 was not detectable after co-
incubation of the antibody with its blocking peptide (Fig.
2F). GPR55 was present in GCs and neurites of retinal
explants from gpr55�/� (Fig. 2G). GPR55 immunoreactiv-
ity was not detectable in retinal explants obtained from
gpr55-/- mice (Fig. 2H) or in the presence of blocking
peptide (Fig. 2I). In WT mice, GPR55 was expressed in
dendrites (Fig. 2J–L) and axons (Fig. 2M–O). It was also
present in cortical neuron somas, neurites, and GCs (Fig.
2P). Moreover, the expression of GPR55 was investigated
using Tocrifluor (T-1117), a fluorescent ligand of GPR55
(Sylantyev et al., 2013), confirming the presence of
GPR55 in primary cortical neurons (Fig. 2Q). Isolated
retinal ganglion cells from E14/15 mice expressed GPR55
in their GCs and filopodia (Fig. 2R). Overall, we observed
that during development, GPR55 was present in the reti-
nas of mouse and hamster.

GPR55 ligands reorganize GC morphology and
modulate axon growth
To assess the role of GPR55 during retinal axon growth
and guidance, retinal explants isolated from embryonic
mice were cultured for 2 DIV, and treated with pharma-
cologic modulators of GPR55. When retinal explants were
exposed to 1�M LPI (n 	 1005 GCs; �p � 0.0001a;
Table 1) or 300 nM O-1602 (n 	 1022 GCs; �p � 0.0001a)
for 60 min, the GC surface area and the number of filop-
odia increased significantly compared with the control (n
	 1023 GCs). In contrast, application of 300 nM CBD (n 	
1134 GCs; �p � 0.0001a) to the cultures decreased the
GC surface and filopodia number in RGCs neurons (Fig.
3A–C). To investigate the effects of GPR55 ligands on
axon growth, retinal explants were treated for 15 h with
LPI, O-1602, or CBD. Treatments with agonists 1 �M LPI
(n 	 605 explants; �p � 0.0001b) and 300 nM O-1602 (n 	
595 explants; �p � 0.0001b) increased the total neurite
growth, whereas the 300 nM CBD (n 	 602 explants; �p �
0.0001b) decreased it compared with control (n 	 720
explants; Fig. 3D,E). Interestingly, the LPI, O-1602, and
CBD had similar effects in tissues obtained from WT,
cannabinoid receptor 1 knock-out (cnr1-/-) or cannabinoid
receptor 2 knock-out (cnr2-/-) mice (GC area, p 	 0.37c;
filopodia number, p 	 0.48c; total neurite outgrowth, p 	

0.29c; Fig. 3B,C,E). Together, these results indicate that
ligands engaging GPR55 modulate GC morphology and
axon growth in retinal explants, and that their effects are
not mediated by CB1R or CB2R.

To investigate the possible effect of the deletion of
gpr55, retinal explants from E14/15 gpr55-/-embryos were
cultured and compared to the ones obtained from
gpr55�/� mice. The absence of GPR55 was accompanied
by a significant decrease in growth cone surface area (Fig.
4A,B), filopodia number (Fig. 4A,C; n 	 616 GCs for WT
control; n 	 218 GCs for KO; #p 	 0.003e) and in total
neurite outgrowth compared with WT, (n 	 298 explants
for WT control; n 	 191 explants for gpr55-/- control
group; #p 	 0.0001d; Fig. 4A,D). To confirm the involve-
ment of GPR55 in the changes of GC morphology and
retinal projection growth following treatment with LPI,
O-1602 and CBD, retinal explants obtained from gpr55�/�

and gpr55-/- mouse embryos were treated with the afore-
mentioned agonists and antagonist. In cultures prepared
from gpr55�/� embryos, LPI (1 �M; n 	 585 GCs; �p �
0.0001d) and O-1602 (300 nM; n 	 501 GCs; �p �
0.0001d) increased the GC surface area and filopodia
number, whereas CBD (300 nM; n 	 547 GCs; �p �
0.0001d) decreased them (n 	 616 GCs for WT control;
Fig. 4E–G). These effects were absent in retinal explants
obtained from gpr55-/- embryos (LPI: n 	 135 GCs; #p 	
0.0035e; O-1602: n 	 111 GCs; #p 	 0.0031e; CBD: n 	
167 GCs; #p 	 0.0029e compared with WT). Furthermore,
the increase in total projection length after treatment with
LPI (CTRL: n 	 298 explants; LPI: n 	 265 explants; �p �
0.0001d) and O-1602 (n 	 248 explants; �p � 0.0001d)
and the decrease induced by CBD (n 	 273 explants; �p
� 0.0001d) in gpr55�/� animals were absent in the
gpr55-/- group (CTRL: n 	 191 explants; LPI: n 	 155
explants; #p 	 0.0037e; O-1602: n 	 108 explants; #p 	
0.0029e; CBD: n 	 127 explants; #p 	 0.0032e compared
with gpr55�/�; Fig. 4H,I). These results confirm that the
effects observed on GC morphology and retinal projection
growth following treatments with LPI, O-1602, and CBD
are mediated by GPR55. Together, these observations
demonstrate that GPR55 modulates GC morphology and
increases retinal projection growth.

At low concentrations, GPR55 agonists modulate GC
morphology and axon growth via the ERK1/2
pathway
Because it is well documented that stimulation of GPR55
and subsequently G�13 activate ERK1/2 (Henstridge
et al., 2011), we tested whether this receptor modulates
the ERK1/2 pathway during axon growth and guidance.
ERK1/2 phosphorylation was significantly increased fol-
lowing 1 �M LPI and 300 nM O-1602 stimulation, whereas
300 nM CBD application decreased it (CTRL: n 	 15
samples; LPI: n 	 15 samples, �p � 0.0001f; O-1602: n 	

continued
adult mouse retina. P–R, The specificity of the antibody and the mRNA probe was validated using gpr55-/- mice. Scale bars: A–C,
M–R, 75 �m; G–I, 30 �m; D–F, J–L, 25 �m. NBL, Neuroblast layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer; GCL, ganglion cell layer; GCFL, ganglion cell fiber layer.
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Figure 2. GPR55 protein expression in retinal explants and primary cortical neurons. A, Expression of GPR55 in the mouse
cortex and (B) retina at different developmental stages. C, Expression of GPR55 in the retina of gpr55�/� and gpr55-/- mouse embryo
(E14/15). D–F, Expression of GPR55 in retinal explants from gpr55�/�and gpr55-/- mice, and in the presence of the specific blocking
peptide (BP). G–I, E14/15 axons and growth cones of retinal explants from gpr55�/� and gpr55-/- mice, and in the presence of the
specific BP. J–L, The expression of GPR55 in dendrites (MAP2) and (M–O) axons (NFM) of RGCs. P, Expression of GPR55 in primary
cortical neuron using GPR55 antibody, (Q) using 3 �M of specific GPR55 fluorescent Tocrifluor ligand T-1117 and (R) using GPR55
antibody in a purified RGC culture. Scale bars: D–F, 100 �m; G–I, P–R, 10 �m; J–O. 5 �m.
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15 samples, �p � 0.0001f; CBD: n 	 15 samples, �p �
0.0001f; Fig. 5A,B). CI-1040 (1 �M), a selective ERK1/2
inhibitor blocked the effects of LPI (1 �M) and O-1602 (300
nM) on the ERK phosphorylation (Fig. 5C). In primary
neuronal cultures, 2, 5, and 20 min modulation of GPR55
with LPI (1 �M), O-1602 (300 nM), and CBD (300 nM) did
not induce any significant changes in protein kinase B
(AKT) or protein kinase A (PKA) phosphorylation levels
(Fig. 5D,E). To assess the role of the ERK 1/2 pathway in

GPR55 effects, retinal explants were first treated with
ERK-selective inhibitor. Followed by pharmacologic
activation of GPR55, CI-1040 blocked LPI (1 �M) and
O-1602 (300 nM) induced increases in GC surface area
and filopodia number (CTRL: n 	 520 GCs; LPI: n 	 517
GCs, �p � 0.0001g; O-1602: n 	 509 GCs, �p � 0.0001g;
LPI�CI: n 	 500 GCs, #p � 0.0001h; O-1602�CI: n 	 495
GCs; #p � 0.0001h; Fig. 5F–H). Of note, no significant
difference was observed between the CTRL condition and

Table 1. Statistical Table

Data structure Type of test Power
All statistical tests a–t Normally distributed ANOVA with post hoc Bonferroni 0.9–1.0
Test u Normally distributed Student’s t test 0.921

Statistical analyses were performed by ANOVA with Bonferroni’s post hoc test and Student’s t tests (Systat software).

Figure 3. GPR55 ligands reorganize the morphology of the GC and modulate axon growth via a cannabinoid independent
pathway. A–C, Growth cone surface area and filopodia number of retinal projection GCs after a 60 min treatment with GPR55
agonists LPI (1 �M) and O-1602 (300 nM) or antagonist CBD (300 nM) in WT, cnr1-/-, and cnr2-/- mice. D, E, Total retinal neurite growth
of retinal explants cultured for 1 DIV and treated for 15 h with LPI (1 �M), O-1602 (300 nM), and CBD (300 nM) in WT, cnr1-/-, and cnr2-/-

mice. Scale bars: A, 5 �m; D, 100 �m. Values are presented as mean � SEM. �Indicates significant changes between LPI, O-1602,
or CBD compared with control in B, C, and E; p � 0.004.
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Figure 4. GPR55 mediates the reorganization of the GC morphology and the modulation of axon growth. A–D, Basal growth
cone surface area, filopodia number and total neurite outgrowth in gpr55�/� and gpr55-/- retinal explants. E–G, Growth cone surface
area and filopodia number in gpr55�/� and gpr55-/- retinal explants treated for 1 h with LPI (1 �M), O-1602 (300 nM), or CBD (300 nM).
H, I, Total neurite outgrowth in gpr55�/� and gpr55-/- retinal explant treated for 15 h with LPI, O-1602, or CBD at the same previously
cited concentrations. Scale bars: A, E, 5�m for GC; A, H, 100 �m for explants. Values are presented as mean � SEM. �Indicates a
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CTRL�CI in the GC surface area and the filopodia num-
ber (CTRL: n 	 520 GCs; CTRL�CI: n 	 498 GCs, p 	
0.12g; Fig. 5G,H). Moreover, inhibition of ERK1/2 blocked
the effect of LPI and O-1602 on total projection length
(CTRL: n 	 220 explants; LPI: n 	 215 explants, �p �
0.0001i; O-1602: n 	 209 explants, �p � 0.0001i; LPI�CI:
n 	 210 explants, #p 	 0.0012j; O-1602�CI: n 	 200
explants, #p 	 0.003j). The ERK inhibitor had no signifi-
cant effect on the total projection length by itself (CTRL: n
	 220 explants; CTRL�CI: n 	 204 explants, p 	 0. 2i;
Fig. 5I,J). Together, these data demonstrate that the ac-
tivation of GPR55 modulates GC morphology and axon
outgrowth via the ERK1/2 pathway.

At a higher concentration, LPI activates RhoA kinase
In addition to ERK1/2, other signaling pathways such as
RhoA, cdc42, and rac1 can be activated by GPR55 (Ry-
berg et al., 2007; Lauckner et al., 2008; Henstridge et al.,
2010 and Obara et al., 2011). LPI at a concentration of 10
�M but not 1 �M induced an increase in RhoA phosphor-
ylation (CTRL: n 	 8 samples; 1 �M LPI: n 	 8 samples, p
	 0.31k; 10 �M LPI: n 	 8 samples, �p � 0.001k and #p �
0.001k compared to 1 �M LPI; Fig. 6A,B). Interestingly, 10
�M LPI decreased the GC area, the number of filopodia
(CTRL: n 	 560 GCs; LPI 10 �M: n 	 547 GCs, �p �
0.0001l) and the total projection length compared with the
control (CTRL: n 	 260 explants; LPI 10 �M: n 	 217
explants, �p � 0.0001m), whereas 1 �M LPI increased
them (CTRL: n 	 560 GCs; LPI 1 �M: n 	 522 GCs, �p �
0.0001m and CTRL: n 	 260 explants; LPI 1 �M: n 	 213
explants, �p � 0.0001m). In the presence of CBD (300 nM),
the effect of 1 �M LPI is blocked (1 �M LPI: n 	 522 GCs;
1�M LPI �CBD: n 	 500 GCs, #p � 0.0001n; 1 �M LPI: n
	 213 explants; 1 �M LPI � CBD: n 	 203 explants, #p �
0.0001n), whereas it is partially abolished for 10 �M LPI (10
�M LPI: n 	 547 GCs; 10 �M LPI � CBD: n 	 498 GCs, #p
� 0.0001n; 10 �M LPI: n 	 217 explants; 10 �M LPI �
CBD: n 	 218 explants, #p � 0.0001n; Fig. 6C–G). To
assess whether RhoA/ROCK1 participated in the effects
induced by high concentration of LPI, retinal explants
were pretreated with Y-27632 (20 �M), a selective rho-
associated, coiled-coil-containing protein kinase 1
(ROCK1) inhibitor. Y-27632 itself did not cause any
changes in GC morphology (CTRL: n 	 560 GCs; CTRL�
Y-27632: n 	 480 GCs, p 	 0.31l; Fig. 6D,E) or projection
length (CTRL: n 	 260 explants; CTRL� Y-27632: n 	
208 explants, p 	 0.22m; Fig. 6G). ROCK1 inhibition
blocked 10 �M LPI induced decreases in GC area, filop-
odia number and projection length (10 �M LPI: n 	 547
GCs; 10 �M LPI �Y-27632: n 	 488 GCs, #p � 0.0001n;
10 �M LPI: n 	 217 explants, 10 �M LPI �Y-27632: n 	
208 explants, #p � 0.0001n; Fig. 6C–G). Similar activation
of RhoA after stimulation of GPR55 with its ligand LysoPt-
dGlc was reported during the guidance modulation of
nociceptive axon projections in the developing spinal cord

(Guy et al., 2015). Together, these data demonstrate that
a low concentration (1 �M) of LPI activates the ERK1/2
pathway, whereas a higher concentration (10 �M) acti-
vates RhoA. This could in part explain the considerable
variation in experimental results obtained by different lab-
oratories examining GPR55 signaling (Henstridge, 2012).

Pharmacologic manipulation of GPR55 affects RGC
turning
To evaluate the involvement of GPR55 in axon steering,
time-lapse microscopy at 1 DIV on embryonic mouse
retinal explant growth cones was performed. Arrows and
arrowheads show micropipette and growth cone position,
respectively. A microgradient application of 1 �M LPI
elicited attractive turning, whereas 300 nM CBD induced
GC collapse and neurite retraction (vehicle: n 	 7, 1 �M;
LPI: n 	 9300 nM; CBD: n 	 11 �p � 0.0001° for length
and �p � 0.0001p for angles; Fig. 7A–E). The vehicle did
not induce any significant directional GC turning. Interest-
ingly, at a concentration of 10 �M, LPI induced growth
cone collapse and retraction of the retinal axon (Fig. 7F).
These data show that GPR55 can modulate axon growth
and steering, and its agonist LPI can act as a chemoat-
tractive or chemorepulsive signal depending on its con-
centration.

GPR55 plays an important role during retinal
projection growth and target innervation
To investigate the potential role played by GPR55 during
development in vivo, we first performed a phenotypical
screening on early postnatal gpr55�/� and gpr55-/- mice
to detect any morphologic differences. In P3 gpr55-/-

mice, the absence of GPR55 induced a few aberrant
projections in the ipsilateral side of the SC (Fig. 8A).
Compared with the WT group, P3 gpr55-/- mice showed a
significant decrease in RGC axon branch growth and
number in the DTN (Fig. 8B–D; n 	 8 brains for each type;
WT: n 	 192; KO: n 	204, �p 	 0.0001s for axon growth
and �p 	 0.0001t for number of branches at 150, 200,
250, and 300 �m). During perinatal development, RGCs
axons from both eyes connect with multiple target cells in
the dLGN. These projections spread throughout the dLGN
sharing common terminal space. Eye-specific segrega-
tion occurs during postnatal development (Godement
et al., 1984). In the adult rodent, RGC axons occupy
distinct eye-dependent non-overlapping regions of the
dLGN. To assess the involvement of GPR55 in retino-
geniculate development, we examined the projections to
the dLGN of adult gpr55�/� and their WT littermates.
Contralateral projections of gpr55�/� mice occupied a
larger area than that of gpr55�/� mice (Fig. 8E). The
contralateral and ipsilateral retinal projection images were
quantified using a multithreshold method of analysis.
These data indicate a significant overlap between con-
tralateral and ipsilateral RGC projections in the dLGN of

continued
significant change induced by LPI, O-1602, or CBD compared with the control in F, G, and I; p � 0.0001; #Indicates a significant
change between LPI, O-1602, or CBD and the control in gpr55�/� compared to gpr55-/- in F, G, I, and B–D; p � 0.004.
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Figure 5. At low concentration, GPR55 ligand modulates GC morphology and axon growth via the ERK1/2 pathway. A,
Expression of P-ERK-1/2, ERK-1/2 and �-actin in primary cortical neurons incubated with one of the following: 1 �M LPI, 300 nM
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gpr55�/� mice [Fig. 8F; n 	 7 brains (140 slices) for WT
and n 	 7 brains (140 slices) for KO; �t 	 0.0234u; df 	
38].

Compared to other rodents, hamsters have a shorter
gestation period [hamsters (15.5 d), rats (21.5 d), and mice
(18.5 d)]. Therefore, hamsters are born with a relatively
premature neurovisual system at birth (Clancy et al.,
2001). The embryonic development of the neurovisual
system in these mammals (mouse and hamster) occurs at
almost identical time points. For example, RGC genera-
tion starts at E9.5 for hamsters and E10.5 for mice,
whereas the dLGN starts to develop at E10.5 for both
models (Robinson and Dreher, 1990; Clancy et al., 2001).
The RGC axons of hamster reach their thalamic and
midbrain targets at (P3; Bhide and Frost, 1991). Taking
advantage of this observation, intraocular injections were
performed in hamsters at P1, to investigate the effects of
GPR55 ligands during the early development of the visual
system.

To assess the contribution of GPR55 ligands to the
development of the retinal projections, the hamsters re-
ceived intraocular injections of a GPR55 agonist or antag-
onist: LPI and CBD, respectively, at the date of birth. At
P5, immunohistologic investigation revealed that interfer-
ing with GPR55 signaling had detrimental effects on RGC
axon development. As indicated by a robust labeling of
hamster retinal axons, LPI injection at the day of birth
induced aberrant projections in the ipsilateral side of the
SC (Fig. 8G). GPR55 pharmacologic agents modulated
collateral projection length: compared with the control
group, intraocular injection of LPI induced a significant
increase in RGC axon growth and branch number in the
DTN (Fig. 8H). Conversely, CBD decreased these param-
eters. Specifically, LPI injection induced a significant in-
crease in RGC collateral length and branch number in the
DTN, whereas these measures were significantly lower in
the group treated with CBD compared with the vehicle
group [vehicle: n 	 84, 1�M; LPI: n 	 25, 300 nM; CBD: n
	 44, �p � 0.001q for axon growth and �p � 0.0001r for
number of branches at 150, 200, 250, and 300 �m (LPI)
and 100, 150, 200, and 250 �m (CBD); Fig. 8I,J]. Together,
these observations demonstrate the important role played
by GPR55 during the development of the retinogeniculate
pathway.

Discussion
In the present study, we show that GPR55 is expressed in
the retina during the development of the visual pathway.
GPR55 activation increased ERK 1/2 activity resulting in

higher surface area and filopodia number of the growth
cone. In addition, GPR55 agonist increased retinal axon
growth, while a GPR55 antagonist decreased it. Interest-
ingly, at high concentration, LPI can also activate the
RhoA pathway, which decreases the GC surface area and
the filopodia number, resulting in axon retraction. In vivo,
at P3, the absence of the GPR55 causes a decrease of the
axon branch number and length in the DTN. Accordingly,
a decreased overlap between ipsilateral and contralateral
projections compared to WT was expected in the adult
mouse LGN. Interestingly, the opposite effect was ob-
served which refers to a possible role of GPR55 in target
innervation and refinement process. GPR55 activation
with LPI in P5 hamster increased RGC projection length,
branch number in the DTN and induced aberrant projec-
tions in the SC, whereas its blockade using CBD mimics
the effect observed in the DTN of the gpr55-/- mouse.
Together, these observations demonstrate that GPR55
plays an important role in axon growth and visual brain
innervation. Furthermore, this receptor is crucial for
proper development of the retinothalamic pathway.

GPR55 expression in the retina
Previous studies reported ubiquitous distribution of gpr55
mRNA in the CNS, with the following order of expression
in mouse tissues: frontal cortex � striatum � hypothala-
mus � brain stem � cerebellum 	 hippocampus � spinal
cord (Ryberg et al., 2007). It is also expressed in the
caudate, putamen, dorsal root ganglion neurons, and dif-
ferentiated PC12 cells (Lauckner et al., 2008; Obara et al.,
2011; Sylantyev et al., 2013; Wu et al., 2013). In adult
vervet monkey, GPR55 protein localization was reported
strictly in the photoreceptor layer of the retina with most
prominent staining in the inner segments in rod (Bouskila
et al., 2013a). In our study, GPR55 protein is largely
expressed in the adult mouse retina. Similar difference in
the pattern of expression of cannabinoid receptor 2 pro-
tein was observed between adult vervet monkeys and
adult rodents (Bouskila et al., 2013b; Cécyre et al., 2013).
In fact, CB2R is present only in Müller cells in the adult
vervet monkey retina (Bouskila et al., 2013b), whereas it is
localized in cone and rod photoreceptors, horizontal cells,
some amacrine cells, bipolar and ganglion cells in adult
mouse retina (Cécyre et al., 2013). Similar distribution to
the mouse was observed in the rat retina, with CB2R
being localized in retinal pigmentary epithelium, inner
photoreceptor segments, horizontal and amacrine cells,
neurons in GCL, and fibers of the IPL (López et al., 2011).
The difference in the protein expression could be attrib-

continued
O-1602, or 300 nM CBD at 37°C for 2, 5, and 20 min. The antibody �-actin was used to verify (and correct for) equal loading in all lanes.
B, Histogram illustrating the quantification of ERK-phosphorylation. C, ERK phosphorylation state following 15 min pretreatment with
CI-1040, an ERK1/2 inhibitor, before the incubation with or without 1 �M LPI, 300 nM O-1602 or 300 nM CBD. D, E, AKT and PKA
phosphorylation states, no significant variations were observed in the presence of GPR55 ligands for the times indicated. F–H, Growth
cone surface area and filopodia number of retinal explant treated with GPR55 agonists in the presence or the absence of the ERK
inhibitor. I–J, Total projection growth of retinal explant cultures treated with GPR55 agonists LPI and O-1602 in the presence or the
absence of CI-1040. Scale bars: F, 10 �m; I, 100 �m. Values are presented as mean � SEM. �Indicates a significant change
compared with the control group in B, G, H, and J; p � 0.0001. #Indicates a significant change induced by the ERK inhibitor in G,
H, and J; p � 0.004.
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Figure 6. At a higher concentration, LPI activates RhoA pathway and produces growth cone collapse and neurite repulsion.
A, B, Using p-RhoA and RhoA antibodies, RhoA activation was determined analyzing the respective phosphorylation state by Western
blotting following treatment with 1 or 10 �M LPI. C–E, Growth cone surface area and filopodia number of retinal explants after
treatment with GPR55 agonist in the presence or the absence of the ROCK1 inhibitor, Y-27632. F, G, Total projection length of retinal
explant treated with GPR55 agonist LPI (1 or 10 �M) in the presence or the absence of the Y-27632. Scale bars: C, 5 �m; F, 100 �m.
Values are presented as mean � SEM. �indicates a significant change compared to the control group; #indicates a significant change
induced by CBD (300 nM) or Y-27632 (20 �M) in D, E, and G; p � 0.0001 and p � 0.001 in B.
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uted to the differences in the visual system between
rodents and primates and the physiologic role played by
the receptor in each animal model. Although the studies
report the presence of the receptor in the adult CNS
(Sawzdargo et al., 1999; Wu et al., 2013) and adult vervet
monkey retina (Bouskila et al., 2013a), its expression in
retina and retinal projections of rodents during develop-
ment were unknown. In this study, we demonstrate that
GPR55 is expressed in the developing hamster and
mouse retina, axonal projections, their growth cones, and
filopodia.

Effects of the GPR55 ligands on the GC morphology
and axon growth
In this study, pharmacologic activation or blockade of
GPR55 modulated GC morphology and axon growth of
RGCs. Accordingly, GPR55 agonists LPI and O-1602 in-
creased retinal projection growth, induced an expansion
in the surface area and augmented filopodia number of
GCs. On the other hand, the GPR55 antagonist, CBD,
decreased the growth of retinal projections and induced
GC collapse. These data are in accordance with previous
studies in which LPI has been found to activate GPR55 in

Figure 7. Pharmacological modulation of GPR55 affects RGC turning in vitro. A, Photomicrographs of time-lapse microscopy
from 1 DIV mouse retinal explant growth cone taken at t 	 0 min and t 	 60 min during GC turning assay experiments. Black arrows
indicate the direction of the microgradient, whereas blue arrowheads indicate initial GC position. Green arrowheads show the GC
position following neurite attraction and red arrowheads indicate the GC position after repulsion. B, C, Superimposed RGC axon
trajectories over the 60 min observation period for vehicle and LPI; no significant changes were observed on growth cone behavior
in the presence of the vehicle, whereas LPI increased axon growth and turning toward the pipette tip. Black arrows indicate the
direction of the gradient. D, Turning angle cumulative frequency curves of RGC growth cones. The turning angle of each growth cone
was plotted against the percentage of growth cones turning that angle or less. E, Quantification of neurite elongation and GC turning
responses following drug stimulation. F, Representative photomicrograph of the effect of repulsion and GC collapse created during
60 min stimulation with 10 �M LPI. Scale bars: A, F, 40 �m. Values are presented as means � SEM; �indicates significant change
compared with the vehicle in E; p � 0.0001.
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Figure 8. GPR55 plays an important role during retinal projection growth and target selection in vivo. A, Photomicrographs of
retinal projections in the SC of P3 gpr55�/� and gpr55-/- mouse pups injected, at P1, in one eye with CTb. B, Photomicrographs of
retinal projections in the DTN of P3 gpr55�/� and gpr55-/- mice C, Quantification of retinal projection development in the DTN of
gpr55�/� and gpr55-/-; collateral projection length are expressed as mean � SEM. D, Number of collateral axon branches decreases
in gpr55-/- compared to gpr55�/� mice. E, Images of retinogeniculate projection patterns visualized following CTb conjugated to
AlexaFluor 555 (CTb-555; red) and CTb-488 (green) injections into left and right eyes of gpr55�/� and gpr55-/- adult mice. Merged
images show all projections from both eyes to the dorsal lateral geniculate nucleus, overlaying projections are shown in yellow. F,
Quantification in gpr55�/�and gpr55-/- adult mice of the percentage of the dLGN receiving overlapping inputs as mean � SEM. G,
Photomicrographs of retinal projections in the SC of P5 hamsters injected, at P1, in one eye with CTb and LPI or vehicle. A single
injection of LPI induced aberrant projections in the ipsilateral SC. H, Photomicrographs of P5 hamster retinal projections in the DTN
in the control, LPI, and CBD groups. I, Quantification of retinal projection development in the DTN; collateral projection length are
expressed as mean � SEM. J, Number of collateral axon branches in treated groups compared to the control group. LPI increased
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DRGs (Lauckner et al., 2008), osteoclasts (Whyte et al.,
2009), lymphoblastoid cells (Oka et al., 2010), cancer cell
proliferation (Andradas et al., 2011), and hippocampal
slices (Sylantyev et al., 2013). Knowing the proliferative
and pro-migratory effects of LPI in cancer cell lines, we
would expect a neurite elongation in PC12 cells (Soga
et al., 2005; Hu et al., 2011; Piñeiro et al., 2011). Accord-
ing to the literature on LPI, most studies showed signifi-
cant effects when LPI was used in concentration ranging
from 0.1 to 10 �M, 1 �M being the most commonly used
concentration (Oka et al., 2007; Anavi-Goffer et al., 2012;
Rojo et al., 2012). Most of the studies reporting an effect
of LPI on intracellular calcium mobilization, proliferation,
channels’ activation and migration used lower concentra-
tions, such as 1–3 �M (Oka et al., 2007; Henstridge et al.,
2009; Pietr et al., 2009; Whyte et al., 2009; Piñeiro et al.,
2011). Our results are in accordance with Balenga et al.
(2011), defining LPI (3 �M) as a chemoattractive molecule
for microglia. Another study showed a highly migratory
effect of LPI (1 �M) on the metastatic MDA-MB231 breast
cancer cell line, which expresses GPR55 (Monet et al.,
2009). In addition, LPI stimulated cell elongation at the
same concentration range (Ford et al., 2010). However,
these findings challenge the results of neurite retraction
produced by LPI via GPR55 in differentiated PC12 cells
(Obara et al., 2011) or the absence of effect of LPI in spinal
cord axons (Guy et al., 2015). The discrepancy could be
explained by the fact that Obara et al., (2011) used LPI
and CBD at concentrations 5 to 30 times higher than the
ones used in the present study. At these high concentra-
tions (�10 �M), these GPR55 pharmacologic ligands
could also act on nonspecific targets or activate alterna-
tive signaling pathways, such as RhoA/ROCK1 as shown
in the present study. This hypothesis could explain the
opposite effects seen between the two ranges of concen-
trations for the same GPR55 agonist, and help to illustrate
the complexity of interpreting experiments with these lip-
ids. Furthermore, GPR55 protein levels in PC12 and in
primary neurons are different and may produce distinctive
effects. PC12 cells are derived from a chromaffin cell
tumor, thus are neuroendocrine-derived, and may be
quite different from primary neurons. (Frassetto et al.,
2006). Hence, the pharmacologic differences in the effect
of LPI can be explained by dissimilarities in the phenotype
of these two cell types. An additional difference that arises
between PC12 cell lines and RGCs is the morphologic
development that is regulated by diverse factors operat-
ing during different time periods (Coombs et al., 2007) and
can explain the effect observed with LPI. The absence of
effect of LPI on guidance of nociceptive afferent axons in
the developing spinal cord (Guy et al., 2015) could be
attributed to a difference in neuron subtypes. Neverthe-
less, these findings highlight the distinct mechanisms by

which GPR55 modulates the development of various neu-
ronal populations.

Axon growth and GC morphology reorganization are
mediated by GPR55 via the ERK1/2 or RhoA/ROCK1
pathways
Although several G� subunits have been implicated in
GPR55 signal initiation (Ryberg et al., 2007; Lauckner
et al., 2008; Henstridge et al., 2011), it appears in our
study that stimulation of GPR55 results in the activation of
the MAPK pathway. To characterize the mechanism by
which GPR55 modulates growth cone morphology and
axon growth, we examined the ERK1/2 pathway. We
demonstrate that at 1 �M, the GPR55 agonist, LPI, in-
creases ERK1/2 phosphorylation. This is in accordance
with an increasing number of studies showing that LPI-
stimulated GPR55 activates ERK1/2 (Oka et al., 2007;
Kapur et al., 2009; Pietr et al., 2009; Whyte et al., 2009;
Andradas et al., 2011; Pineiro et al., 2011). In addition, our
findings illustrate that at a higher concentration; this
GPR55 agonist increases RhoA/ROCK1 activity and high-
light additional signaling pathways associated with
GPR55. A consensus among the articles published on
GPR55 reported the involvement of the actin cytoskeleton
and the activation of RhoA (Lauckner et al., 2008; Kapur
et al., 2009; Henstridge et al., 2010). This dual action of
LPI on ERK and RhoA/ROCK1 pathways is concentration
dependent. Downstream signaling pathways of GPR55
remain controversial and further studies are needed to
characterize all the mechanisms implicated.

Effects of GPR55 ligands on RGC turning
As the neurovisual system is established, axons travel
relatively long distances guided by the concerted action
of attractive and repulsive cues in a complex environment
to reach their target. Located at the axonal tip, the GC is
a highly motile structure detecting directional signals in
the environment. Guidance cues, notably members of the
netrin, semaphorin, ephrin, slit families, cell-adhesion
molecules, morphogens, and growth factors, modulate
the behavior and growth of axons (Dupin et al., 2013).
GPR55, like CB1R and CB2R, could be another modula-
tion mechanism of axon guidance (Argaw et al., 2011;
Duff et al., 2013). GPR55 activity at the GC modulates
retinal axon navigation; GCs are attracted in the presence
of LPI microgradient, whereas CBD induced GC collapse
and retraction. Based on these results, GPR55 plays a
modulatory role in axon navigation by modifying the mor-
phology and the behavior of the GC. These results show,
for the first time, a role for GPR55 in axon guidance in
vitro, and are in accordance with the literature of LPI effect
on signaling, migration, and growth (Oka et al., 2007,
2010; Lauckner et al., 2008; Henstridge et al., 2009; Pietr
et al., 2009; Whyte et al., 2009; Pineiro et al., 2011;

continued
axon growth and collateral branch number, whereas CBD decreased these endpoints compared with the control. Scale bars: A, B,
E, G, 200 �m; H, 100 �m. n 	 8 brains per condition for P3 mice, n 	 7 brains per condition for adult mice, and n 	 5 brains per
condition for P5 hamsters; �indicates significant change compared with the control group in C, D, F, I, and J; p 	 0.0001.
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Sylantyev et al., 2013), whereas the opposite effect was
observed with CBD (Ryberg et al., 2007; Pertwee, 2007;
Ross, 2009; Whyte et al., 2009; Balenga et al., 2011;
Kallendrusch et al., 2013; Sylantyev et al., 2013).

GPR55 affects target selection during development
in vivo
LPI can be generated by the action of a phospholipase
PLA2 that catalyzes the hydrolysis of an acyl group from
phosphatidylinositol (PI; Grzelczyk and Gendaszewska-
Darmach, 2013). Similarly, PLA1 can be also involved in
the formation of LPI (Yamashita et al., 2013). In 2007, LPI
was described as the potential endogenous agonist of
GPR55 (Oka et al., 2007) and was found present in differ-
ent ranges in normal human cells (ie, platelets (Billah and
Lapetina, 1982), peripheral blood neutrophils (Smith and
Waite, 1992), various cancer cell lines (Xiao et al., 2000,
2001; Xu et al., 2001; Ford et al., 2010; Oka et al., 2010;
Andradas et al., 2011; Pineiro et al., 2011; Cantarella
et al., 2011), endothelial cells (Bondarenko et al., 2010),
animal cells [ie, mouse fibroblasts (Hong and Deykin,
1981), macrophages (Zoeller et al., 1987), and rat brain
cells (Oka et al., 2009)]. The concentration of LPI varies
from a tissue to another (37.5 nM per gram of tissue in rat
brain, 2.5 �M in mouse serum, and 1.5 �M in samples of
human plasma; Grzelczyk and Gendaszewska-Darmach,
2013).

During visual system development, RGC axons travel
long distances to connect to their specific targets. Many
guidance cues modulate their navigation and target rec-
ognition; GPR55 and its endogenous ligands could rep-
resent one set of cues. Indeed, our in vivo data show that
pharmacologic manipulation of GPR55 signaling affects
retinal projection growth and navigation. We showed that
a single intraocular injection of LPI leads to the emer-
gence of aberrant ipsilateral RGC projections in the SC.
Indeed, LPI injection increased branching or stabilized
ipsilateral projections that would have normally retracted.
Moreover, we report an increase in the length of retinal
projections and in the number of axons in the DTN fol-
lowing treatment with LPI and a decrease with CBD. In
addition, we noticed the presence of aberrant ipsilateral
RGC projections in the SC in the postnatal gpr55-/- mice.
The increase in the branching observed in the gpr55-/-

mice could be explained by a stabilization of the ipsilateral
projections that would have normally retracted. In addi-
tion, our data show that genetic interference with the
GPR55 activity profoundly affects retinal projection devel-
opment and target selection. Accordingly, the important
role played by GPR55 during RGC axon growth and
refinement is demonstrated by the relative lack of eye-
specific segregation of retinal projections in gpr55-/- post-
natal and adult mice. We interpreted this as a deficit in
eye-specific segregation of retinal projections. In WT an-
imals, this process could be influenced by GPR55 endog-
enous activity at the retina and/or directly at the axon
terminal. It is possible that the absence of GPR55 could
influence retinal spontaneous activity, which is necessary
for segregation and maintenance of specific inputs to the
dLGN (Chapman, 2000) thus modifying the segregation

outcome. Deficiency in eye-specific segregation might
also occur as a result of the absence of functional GPR55
directly at the dLGN. In summary, modulation of GPR55
activity strongly affects retinal projection development
and target selection. These observations are in accor-
dance with previous studies showing the role of GPR55 in
motility, migration, orientation, and polarization of differ-
ent types of human cells, such as breast cancer cells
(Ford et al., 2010; Andradas et al., 2011) and myenteric
neurons in mouse and human colon (Li et al., 2013).

In conclusion, the present study shows for the first time,
in vitro and in vivo, that GPR55 and its ligands are involved
in axon growth and in projection refinement at their mid-
brain targets. In addition, it pinpoints the signaling path-
ways that mediate their effects. The identification of the
mediators implicated in these mechanisms is a valuable
venue for developing new therapeutic agents aiming at
the regeneration and repair of the CNS.
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